Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting to climate change: using natural water sources in the driest regions on earth

25.11.2015

Natural water sources have always been in short supply in Northern Namibia. It is becoming clear that water as a resource is going to come under increasing pressure from climate change. How can the population still be guaranteed a regular supply of drinking water? How can farm land be effectively irrigated or sewage disposed of safely?

In the German-Namibian research and development project entitled CuveWaters, close collaboration between scientist/researchers, partners in the field, and the population itself has made it possible to develop and implement solutions for a sustainable water supply and wastewater disposal.


Farmers at the CuveWaters Green Village in Epyeshona

ISOE

After almost 10 years of research and development, the CuveWaters team headed by ISOE – Institute for Social-Ecological Research today presented its comprehensive results in Windhoek. The integrated water resource management project is funded by the Federal Ministry for Education and Research (BMBF). Its solutions serve as a blueprint for other so-called semi-arid regions of the world.

The complex supply system was implemented at different sites in the Cuvelai-Etosha Basin, whose population is heavily affected by climatic extremes such as flooding and persistent periods of drought.

In collaboration with the Technische Universität Darmstadt, partners in the field and local Namibian partners, it was possible with the help of solar-powered desalination plants to generate new sources of drinking water, even at locations a long way from central water pipelines.

The systems for collecting rainwater and storing floodwater provide water with which
to irrigate farmland. They represent an innovation for this region, and enable several families to cultivate vegetables all year round and sell them at the local markets. But CuveWaters has also given rise to an innovative, energy-efficient sanitation and wastewater concept with subsequent water recycling.

Around 1500 inhabitants of Outapi, most of whom come from low-income households, are now able to use washhouses, showers and toilets. Nutrient-rich service water is recovered from the wastewater and used for irrigation as well as for biogas with which to generate heat and electricity.

Needs-based solutions from a transdisciplinary research process: exchange of knowledge between the population and scientists/researchers

Residents received training in construction, operation and maintenance to prepare them for the time when they took control of the facilities themselves. This training also extended to irrigation for market gardening and correct usage of the sanitation concept as a whole. An integral part of the project was teaching the local population to take personal responsibility via a ‘Capacity Development’ scheme and devising concepts for so-called ‘good governance’. This way, the structures that are now in place can be maintained in the long term.

Conversely, the know-how of the local stakeholders was incorporated into the development and implementation of the facilities: “For a meaningful implementation and application of the technology, we first need to be aware of requirements and understand the local circumstances” said Thomas Kluge, project leader. “Sustainable utilisation of the water resources can only come about via knowledge sharing, i.e. a mutual learning process on the part of the scientists/researchers and the population.”

The German ambassador to Namibia, Matthias Schlaga, referred to this learning process within the “alliance between research and practice that is CuveWaters” as a milestone in the 25-year collaboration between Namibia and Germany. He is sure that “The project team has developed sustainable solutions for the water supply in northern Namibia”, which is a key to the future of Namibia.

Combining water supply, food security and energy recovery: exemplary pilot plants for the whole of southern Africa

The project partners from Namibia also appear convinced by the enduring success of CuveWaters. “The fact that the inhabitants of one of the driest regions on earth are able to supply themselves with water independently of rain periods has already made for a sustainable improvement in living conditions”, said Namibia’s Minister of Agriculture, John Mutorwa. The solutions link the issues of water, food and energy means in such a way that they are able to reduce poverty, secure good health and food supply, and enable adaptation to climate change.”

One particularly unique and exemplary aspect of the project, not just for northern Namibia but for the whole of southern Africa, is the utilisation of wastewater as a resource; it was put into practice at the Outapi site to generate energy and nutrients for crop growing. Project leader Thomas Kluge from ISOE sees the combination of these innovative technologies with appropriate education and training for the population as “a meaningful investment that is of great benefit to the users.”

Shared knowledge: comprehensive documentation of the project’s results regarding technologies and implementation

To allow the results from this pilot project to be used for the whole of southern Africa (and beyond in other semi-arid regions of the world), the project team has made its extensive results available on its website. Here one can find fact sheets on the individual technologies: Sanitation and Water Reuse, Groundwater Desalination, Floodwater Harvesting, and Rainwater Harvesting.

In addition, a comprehensive Technology Toolkit for Rain- and Floodwater Harvesting (RFWH Toolkit) has been assembled. It shows exactly what is needed to construct and use what is still a novel application of rainwater and floodwater collection facilities in Namibia. Sharing our knowledge is an essential part of the CuveWaters philosophy. Our aim is to develop instruments to support decision-making and planning processes, even beyond the project’s duration.

CuveWaters is a cooperative project run by ISOE – Institute for Social-Ecological Re¬search and the Technische Universität Darmstadt. It is funded by the Federal Ministry for Education and Research (BMBF). The partners in Namibia include the Ministry of Agriculture, Water and Forestry (MAWF), Outapi Town Council and the Desert Research Foundation of Namibia (DRFN). The project sites are Iipopo, Outapi, Epyeshona, Akutsima and Amarika.

Press contact Germany:
Melanie Neugart (ISOE)
Tel. +49 69 707 6919 51
neugart@isoe.de

Weitere Informationen:

http://www.isoe.de
http://www.cuvewaters.net

Melanie Neugart | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>