Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting to climate change: using natural water sources in the driest regions on earth

25.11.2015

Natural water sources have always been in short supply in Northern Namibia. It is becoming clear that water as a resource is going to come under increasing pressure from climate change. How can the population still be guaranteed a regular supply of drinking water? How can farm land be effectively irrigated or sewage disposed of safely?

In the German-Namibian research and development project entitled CuveWaters, close collaboration between scientist/researchers, partners in the field, and the population itself has made it possible to develop and implement solutions for a sustainable water supply and wastewater disposal.


Farmers at the CuveWaters Green Village in Epyeshona

ISOE

After almost 10 years of research and development, the CuveWaters team headed by ISOE – Institute for Social-Ecological Research today presented its comprehensive results in Windhoek. The integrated water resource management project is funded by the Federal Ministry for Education and Research (BMBF). Its solutions serve as a blueprint for other so-called semi-arid regions of the world.

The complex supply system was implemented at different sites in the Cuvelai-Etosha Basin, whose population is heavily affected by climatic extremes such as flooding and persistent periods of drought.

In collaboration with the Technische Universität Darmstadt, partners in the field and local Namibian partners, it was possible with the help of solar-powered desalination plants to generate new sources of drinking water, even at locations a long way from central water pipelines.

The systems for collecting rainwater and storing floodwater provide water with which
to irrigate farmland. They represent an innovation for this region, and enable several families to cultivate vegetables all year round and sell them at the local markets. But CuveWaters has also given rise to an innovative, energy-efficient sanitation and wastewater concept with subsequent water recycling.

Around 1500 inhabitants of Outapi, most of whom come from low-income households, are now able to use washhouses, showers and toilets. Nutrient-rich service water is recovered from the wastewater and used for irrigation as well as for biogas with which to generate heat and electricity.

Needs-based solutions from a transdisciplinary research process: exchange of knowledge between the population and scientists/researchers

Residents received training in construction, operation and maintenance to prepare them for the time when they took control of the facilities themselves. This training also extended to irrigation for market gardening and correct usage of the sanitation concept as a whole. An integral part of the project was teaching the local population to take personal responsibility via a ‘Capacity Development’ scheme and devising concepts for so-called ‘good governance’. This way, the structures that are now in place can be maintained in the long term.

Conversely, the know-how of the local stakeholders was incorporated into the development and implementation of the facilities: “For a meaningful implementation and application of the technology, we first need to be aware of requirements and understand the local circumstances” said Thomas Kluge, project leader. “Sustainable utilisation of the water resources can only come about via knowledge sharing, i.e. a mutual learning process on the part of the scientists/researchers and the population.”

The German ambassador to Namibia, Matthias Schlaga, referred to this learning process within the “alliance between research and practice that is CuveWaters” as a milestone in the 25-year collaboration between Namibia and Germany. He is sure that “The project team has developed sustainable solutions for the water supply in northern Namibia”, which is a key to the future of Namibia.

Combining water supply, food security and energy recovery: exemplary pilot plants for the whole of southern Africa

The project partners from Namibia also appear convinced by the enduring success of CuveWaters. “The fact that the inhabitants of one of the driest regions on earth are able to supply themselves with water independently of rain periods has already made for a sustainable improvement in living conditions”, said Namibia’s Minister of Agriculture, John Mutorwa. The solutions link the issues of water, food and energy means in such a way that they are able to reduce poverty, secure good health and food supply, and enable adaptation to climate change.”

One particularly unique and exemplary aspect of the project, not just for northern Namibia but for the whole of southern Africa, is the utilisation of wastewater as a resource; it was put into practice at the Outapi site to generate energy and nutrients for crop growing. Project leader Thomas Kluge from ISOE sees the combination of these innovative technologies with appropriate education and training for the population as “a meaningful investment that is of great benefit to the users.”

Shared knowledge: comprehensive documentation of the project’s results regarding technologies and implementation

To allow the results from this pilot project to be used for the whole of southern Africa (and beyond in other semi-arid regions of the world), the project team has made its extensive results available on its website. Here one can find fact sheets on the individual technologies: Sanitation and Water Reuse, Groundwater Desalination, Floodwater Harvesting, and Rainwater Harvesting.

In addition, a comprehensive Technology Toolkit for Rain- and Floodwater Harvesting (RFWH Toolkit) has been assembled. It shows exactly what is needed to construct and use what is still a novel application of rainwater and floodwater collection facilities in Namibia. Sharing our knowledge is an essential part of the CuveWaters philosophy. Our aim is to develop instruments to support decision-making and planning processes, even beyond the project’s duration.

CuveWaters is a cooperative project run by ISOE – Institute for Social-Ecological Re¬search and the Technische Universität Darmstadt. It is funded by the Federal Ministry for Education and Research (BMBF). The partners in Namibia include the Ministry of Agriculture, Water and Forestry (MAWF), Outapi Town Council and the Desert Research Foundation of Namibia (DRFN). The project sites are Iipopo, Outapi, Epyeshona, Akutsima and Amarika.

Press contact Germany:
Melanie Neugart (ISOE)
Tel. +49 69 707 6919 51
neugart@isoe.de

Weitere Informationen:

http://www.isoe.de
http://www.cuvewaters.net

Melanie Neugart | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>