Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Does a Volcanic Crater Grow? Grab Some TNT and Find Out

A new University at Buffalo study in the journal Geophysical Research Letters examines maar craters, which resemble the bowl-like cavities formed by meteorites but are in some ways more mysterious.

Scientists often can discern pertinent details about meteorites -- when they struck, how large they were, the angle they approached Earth and other information -- by measuring the diameter and volume of the impact crater.

Maar craters, which form when fissures of magma beneath Earth’s surface meet groundwater, causing volcanic explosions, are not as telling, scientists say. The possibility of multiple explosions at varying depths led most scientists to believe that measuring a maar’s size is not the best way to gauge the energy of individual explosions or determine future hazards.

UB geologist Greg A. Valentine, PhD, and other volcano researchers found instead that examining a maar’s shape and the distance it ejects magma, ash and other debris to be a more accurate barometer of the eruption’s force. The findings are important, he said, because they could assist scientists in estimating how big future volcano eruptions might be.

“It’s something that, up until this point, had only been suspected,” said Valentine, a professor of geology and lead author of the Geophysical Research Letters paper. “The simulations we did prove that crater diameter is not a good indicator of explosion energy for these volcanoes.”

The scientists drew their conclusions on a series of UB-funded experiments conducted last summer at a test site in Ashford, N.Y. They built three test beds of gravel, limestone and asphalt. In the first experiment (see the video below) one charge of TNT and plastic explosive was detonated.


In subsequent experiments, the charge was divided into three parts and detonated individually at different depths. The final dimensions of each crater were about the same. That matters, according to Valentine, because it shows that it’s easy to overestimate the energy of explosions if one assumes that the crater comes from one blast, not several.

The dispersal of ejected material differed depending on the location of the charge. For example, the first experiment launched debris more than 50 feet from the crater. Debris from subsequent experiments simulating blasts further underground mostly went up in the air and fell back into the crater or around its rim. As a result, it forced dusty gas -- like the ash that shut down air travel in Iceland and beyond in 2010 -- into the surrounding air. This can be seen in the video below.


Although the experiments provided valuable information, Valentine said they were similar to a practice run. More detailed experiments are being planned for the near future, he said.

Related information:

Simulating Volcano Eruptions, One Blast at a Time
Greg A. Valentine, PhD,
Professor of Geology
Director, Center for Geohazards, University at Buffalo

Cory Nealon | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht NASA provides an infrared look at Hurricane Joaquin over time
08.10.2015 | NASA/Goddard Space Flight Center

nachricht Ancient rocks record first evidence for photosynthesis that made oxygen
07.10.2015 | University of Wisconsin-Madison

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>