Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Does a Volcanic Crater Grow? Grab Some TNT and Find Out

28.11.2012
A new University at Buffalo study in the journal Geophysical Research Letters examines maar craters, which resemble the bowl-like cavities formed by meteorites but are in some ways more mysterious.

Scientists often can discern pertinent details about meteorites -- when they struck, how large they were, the angle they approached Earth and other information -- by measuring the diameter and volume of the impact crater.

Maar craters, which form when fissures of magma beneath Earth’s surface meet groundwater, causing volcanic explosions, are not as telling, scientists say. The possibility of multiple explosions at varying depths led most scientists to believe that measuring a maar’s size is not the best way to gauge the energy of individual explosions or determine future hazards.

UB geologist Greg A. Valentine, PhD, and other volcano researchers found instead that examining a maar’s shape and the distance it ejects magma, ash and other debris to be a more accurate barometer of the eruption’s force. The findings are important, he said, because they could assist scientists in estimating how big future volcano eruptions might be.

“It’s something that, up until this point, had only been suspected,” said Valentine, a professor of geology and lead author of the Geophysical Research Letters paper. “The simulations we did prove that crater diameter is not a good indicator of explosion energy for these volcanoes.”

The scientists drew their conclusions on a series of UB-funded experiments conducted last summer at a test site in Ashford, N.Y. They built three test beds of gravel, limestone and asphalt. In the first experiment (see the video below) one charge of TNT and plastic explosive was detonated.

(http://youtu.be/Hdow0Oh5MEI)

In subsequent experiments, the charge was divided into three parts and detonated individually at different depths. The final dimensions of each crater were about the same. That matters, according to Valentine, because it shows that it’s easy to overestimate the energy of explosions if one assumes that the crater comes from one blast, not several.

The dispersal of ejected material differed depending on the location of the charge. For example, the first experiment launched debris more than 50 feet from the crater. Debris from subsequent experiments simulating blasts further underground mostly went up in the air and fell back into the crater or around its rim. As a result, it forced dusty gas -- like the ash that shut down air travel in Iceland and beyond in 2010 -- into the surrounding air. This can be seen in the video below.

(http://youtu.be/Co7aCxfEcaA)

Although the experiments provided valuable information, Valentine said they were similar to a practice run. More detailed experiments are being planned for the near future, he said.

Related information:

Simulating Volcano Eruptions, One Blast at a Time
http://www.buffalo.edu/news/13570
Greg A. Valentine, PhD,
Professor of Geology
Director, Center for Geohazards, University at Buffalo
http://www.acsu.buffalo.edu/~gav4/home_page.htm

Cory Nealon | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>