Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A hot topic: Radioactive decay is key ingredient behind Earth's heat, research shows

03.08.2011
Nearly half of the Earth's heat comes from the radioactive decay of materials inside, according to a large international research collaboration that includes a Kansas State University physicist.

Glenn Horton-Smith, associate professor of physics, was part of a team gathering some of the most precise measurements of the Earth's radioactivity to date by observing the activity of subatomic particles -- particularly uranium, thorium and potassium. Their work appears in the July issue of Nature Geoscience in the article "Partial radiogenic heat model for Earth revealed by geoneutrino measurements."

"It is a high enough precision measurement that we can make a good estimate of the total amount of heat being produced by these fissions going on in naturally occurring uranium and thorium," Horton-Smith said.

Itaru Shimizu of Tohoku University in Sendai, Japan, and collaborating physicists, including Horton-Smith, made the measurement using the KamLAND neutrino detector in Japan. KamLAND, short for Kamioka Liquid-Scintillator Antineutrino Detector, is an experiment at the Kamioka Observatory, an underground neutrino observatory in Toyama, Japan. Neutrinos are neutral elementary particles that come from nuclear reactions or radioactive decay. Because of their small size, large detectors are needed to capture and measure them.

Horton-Smith was involved with developing the KamLAND detector from 1998 to 2000 and he helped prepare it to begin taking data in 2002. Several years later, he was involved in an upgrade of the detector to help it detect solar neutrinos. For the most recent project, Horton-Smith's role was to help keep the detector running and taking measurements from nuclear reactors in Japan.

By gathering measurements of radioactive decay, the KamLAND researchers were able to observe geoneutrinos, or neutrinos from a geological source. They gathered data from 2002 to 2009 and had published their preliminary findings in Nature in 2005.

"That was the first time that observation of excess antineutrinos and a neutrino experiment were attributed to geoneutrinos," Horton-Smith said.

Previous research has shown that Earth's total heat output is about 44 terawatts, or 44 trillion watts. The KamLAND researchers found roughly half of that -- 29 terawatts -- comes from radioactive decay of uranium, thorium and other materials, meaning that about 50 percent of the earth's heat comes from geoneutrinos.

The researchers estimate that the other half of the earth's heat comes from primordial sources left over when the earth formed and from other sources of heat. Earth's heat is the cause behind plate movement, magnetic fields, volcanoes and seafloor spreading.

"These results helps geologists understand a model for the earth's interior," Horton-Smith said. "Understanding the earth's heat source and where it is being produced affects models for the earth's magnetic field, too."

The research also provides better insight for instances when materials within the earth undergo natural nuclear reactions. Based on their research, the physicists placed a five-terawatt limit on the heat cause by such reactions, meaning that if there is any geological heating from nuclear reactors in the Earth's core it is quite small when compared to heat from ordinary radioactive decay.

Horton-Smith is also involved with the Institute for the Physics and Mathematics of the Universe at Tokyo University in Kashiwa, Japan. He is leading a K-State exploration on the Double Chooz neutrino detector, which measure neutrinos from the Chooz nuclear power plant in the Ardennes region of northern France.

Glenn Horton-Smith | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>