Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A hot topic: Radioactive decay is key ingredient behind Earth's heat, research shows

Nearly half of the Earth's heat comes from the radioactive decay of materials inside, according to a large international research collaboration that includes a Kansas State University physicist.

Glenn Horton-Smith, associate professor of physics, was part of a team gathering some of the most precise measurements of the Earth's radioactivity to date by observing the activity of subatomic particles -- particularly uranium, thorium and potassium. Their work appears in the July issue of Nature Geoscience in the article "Partial radiogenic heat model for Earth revealed by geoneutrino measurements."

"It is a high enough precision measurement that we can make a good estimate of the total amount of heat being produced by these fissions going on in naturally occurring uranium and thorium," Horton-Smith said.

Itaru Shimizu of Tohoku University in Sendai, Japan, and collaborating physicists, including Horton-Smith, made the measurement using the KamLAND neutrino detector in Japan. KamLAND, short for Kamioka Liquid-Scintillator Antineutrino Detector, is an experiment at the Kamioka Observatory, an underground neutrino observatory in Toyama, Japan. Neutrinos are neutral elementary particles that come from nuclear reactions or radioactive decay. Because of their small size, large detectors are needed to capture and measure them.

Horton-Smith was involved with developing the KamLAND detector from 1998 to 2000 and he helped prepare it to begin taking data in 2002. Several years later, he was involved in an upgrade of the detector to help it detect solar neutrinos. For the most recent project, Horton-Smith's role was to help keep the detector running and taking measurements from nuclear reactors in Japan.

By gathering measurements of radioactive decay, the KamLAND researchers were able to observe geoneutrinos, or neutrinos from a geological source. They gathered data from 2002 to 2009 and had published their preliminary findings in Nature in 2005.

"That was the first time that observation of excess antineutrinos and a neutrino experiment were attributed to geoneutrinos," Horton-Smith said.

Previous research has shown that Earth's total heat output is about 44 terawatts, or 44 trillion watts. The KamLAND researchers found roughly half of that -- 29 terawatts -- comes from radioactive decay of uranium, thorium and other materials, meaning that about 50 percent of the earth's heat comes from geoneutrinos.

The researchers estimate that the other half of the earth's heat comes from primordial sources left over when the earth formed and from other sources of heat. Earth's heat is the cause behind plate movement, magnetic fields, volcanoes and seafloor spreading.

"These results helps geologists understand a model for the earth's interior," Horton-Smith said. "Understanding the earth's heat source and where it is being produced affects models for the earth's magnetic field, too."

The research also provides better insight for instances when materials within the earth undergo natural nuclear reactions. Based on their research, the physicists placed a five-terawatt limit on the heat cause by such reactions, meaning that if there is any geological heating from nuclear reactors in the Earth's core it is quite small when compared to heat from ordinary radioactive decay.

Horton-Smith is also involved with the Institute for the Physics and Mathematics of the Universe at Tokyo University in Kashiwa, Japan. He is leading a K-State exploration on the Double Chooz neutrino detector, which measure neutrinos from the Chooz nuclear power plant in the Ardennes region of northern France.

Glenn Horton-Smith | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>