Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a Fire, Before a Flood: NASA's Landsat Directs Restoration to At-Risk Areas

22.08.2013
While the 138,000-acre Silver Fire still smoldered, forest restoration specialists were on the job. They analyzed maps created using Landsat satellite data to determine where the burn destroyed vegetation and exposed soil – and where to focus emergency restoration efforts.

"The map looked like a big red blob," said Penny Luehring, the U.S. Forest Service's Burned Area Emergency Response and watershed improvement program leader, based in Albuquerque, N.M.


The "before" image (left) is a false-color Landsat 8 image acquired May 28, 2013. The "during" image was acquired, June 13, 2013, while the New Mexico Silver Fire was still growing. (The white puffs with black shadows in the right image are clouds.)

Image Credit: USGS/NASA

Red means high-severity fire, she explained – and the red areas were concentrated in a watershed drainage that fed communities west of Las Cruces, N.M. So crews got to work. The Burned Area Emergency Response, or BAER, teams are designed to go in as soon as the flames die down to help protect reservoirs, watersheds and infrastructure from post-fire floods and erosion. And Landsat satellites, built by NASA and operated by the U.S. Geological Survey, help direct the crews to those forest areas needing attention.

As a wildfire starts to die down, fire managers like Luehring can contact the Forest Service's Remote Sensing Applications Center in Salt Lake City to request maps that identify the high, moderate and low severity burns. When that call comes in, remote sensing specialist Carl Albury finds satellite imagery of the burned forest both pre- and post-fire.

In Landsat images, he looks at two of the 11 spectral bands – the near-infrared band and a short-wave infrared band.

"The near infrared reflects well from healthy vegetation, and the short-wave infrared bands reflect well from exposed ground," Albury said. "By comparing the normalized ratio of the near- and shortwave-infrared bands in the pre-fire image to the post-fire image, we can estimate the burn severity."

The near-infrared wavelength bounces off of healthy plant cells, and so sends back a strong signal to the Landsat detector that isn't present over burned areas, explained Jeff Masek, Landsat program scientist with NASA's Goddard Space Flight Center in Greenbelt, Md. But the shortwave infrared band – added to Landsat satellites starting with Landsat 4 – has a distinct spectral signature for burned areas.

"The char will show up very clearly in the shortwave," Masek said.

Albury takes a ratio of the two spectral bands, both before and after a fire. Comparing those ratios, he creates a rough map of fire severity, called the Burned Area Reflectance Classification, or BARC. The BAER teams calibrate or adjust the maps based on on-the-ground observations, and then use them to plan time-sensitive restoration projects.

"Without the BARC product the only way for them to assess the fire is on foot or by helicopter," Albury said, noting that doing so is often infeasible for large fires on remote terrain. "It gives them a sense for how much they need to do, and where they need to do it."

While he also employs remote sensing data from other satellites, Landsat is the satellite of choice, Albury said. That's because of the coverage of its spectral bands as well as the free availability of the images – he can sort through to find cloud-free views of that forest at a similar time in the growing season for the pre-fire comparison. And with Landsat 8 online this summer, the new images don't have the gaps present in Landsat 7 imagery. Plus, having two satellites orbiting halves the wait time for post-fire images.

"Now I've got those good, clean, gap-free scenes on a regular basis," Albury said. "That makes an enormous difference for me and for the BAER teams." He's counting on Landsat 8 being closely calibrated to Landsat 7, he said, so he can compare a pre-fire Landsat 8 image with a post-fire Landsat 7 version, or vice versa.

It's one of the reasons why the Landsat team focused on calibrating Landsat 8 so the reflectance data it gathers is measuring landcover and surface properties exactly the same as its predecessors did, Masek said.

"You want to make sure that the same value means the same thing over time and between instruments," he said. "Otherwise, you have to treat each image as a separate problem."

Albury estimates he creates maps for about 100 fires each fire season. For some fires, like the Silver Fire, he creates maps even before the fire is contained so that crews can get to work as quickly as possible.

"The whole basis for this is the need for speed," Luehring of the BAER recovery program said. "In the southwest and southern California, there's pretty much anywhere from four to six weeks after fire season before it starts to rain and flood. If we're going to put anything in place that has a chance of holding back water, or controlling or mitigating the effects of water, we have to do it right away."

The teams focus on areas at "unacceptable risk," she said, which typically means that post-fire flooding would damage communities, watersheds and infrastructure. They identify those risky areas with a combination of the Landsat-derived maps, reports from the field, and topographical maps that identify steep slopes and watersheds.

After the Silver Fire, for example, they identified severely burned areas upstream of a community, campgrounds and forest roads. So crews scattered barley seeds over 11,000 acres, dropped mulch on 800 acres, closed off roads, storm-proofed forest roads, and pumped toilets at risk of flooding.

"It's all hinged on the burn severity map," Luehring said. "It's how you figure out what the watershed response is going to be."

For more information about Landsat, visit:
http://www.nasa.gov/landsat/
Kate Ramsayer
NASA's Goddard Space Flight Center, Greenbelt, Md.

Kate Ramsayer | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/after-a-fire-before-a-flood-nasas-landsat-directs-restoration-to-at-risk-areas/#.UhUn1z_ZXlV

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>