Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After a Fire, Before a Flood: NASA's Landsat Directs Restoration to At-Risk Areas

22.08.2013
While the 138,000-acre Silver Fire still smoldered, forest restoration specialists were on the job. They analyzed maps created using Landsat satellite data to determine where the burn destroyed vegetation and exposed soil – and where to focus emergency restoration efforts.

"The map looked like a big red blob," said Penny Luehring, the U.S. Forest Service's Burned Area Emergency Response and watershed improvement program leader, based in Albuquerque, N.M.


The "before" image (left) is a false-color Landsat 8 image acquired May 28, 2013. The "during" image was acquired, June 13, 2013, while the New Mexico Silver Fire was still growing. (The white puffs with black shadows in the right image are clouds.)

Image Credit: USGS/NASA

Red means high-severity fire, she explained – and the red areas were concentrated in a watershed drainage that fed communities west of Las Cruces, N.M. So crews got to work. The Burned Area Emergency Response, or BAER, teams are designed to go in as soon as the flames die down to help protect reservoirs, watersheds and infrastructure from post-fire floods and erosion. And Landsat satellites, built by NASA and operated by the U.S. Geological Survey, help direct the crews to those forest areas needing attention.

As a wildfire starts to die down, fire managers like Luehring can contact the Forest Service's Remote Sensing Applications Center in Salt Lake City to request maps that identify the high, moderate and low severity burns. When that call comes in, remote sensing specialist Carl Albury finds satellite imagery of the burned forest both pre- and post-fire.

In Landsat images, he looks at two of the 11 spectral bands – the near-infrared band and a short-wave infrared band.

"The near infrared reflects well from healthy vegetation, and the short-wave infrared bands reflect well from exposed ground," Albury said. "By comparing the normalized ratio of the near- and shortwave-infrared bands in the pre-fire image to the post-fire image, we can estimate the burn severity."

The near-infrared wavelength bounces off of healthy plant cells, and so sends back a strong signal to the Landsat detector that isn't present over burned areas, explained Jeff Masek, Landsat program scientist with NASA's Goddard Space Flight Center in Greenbelt, Md. But the shortwave infrared band – added to Landsat satellites starting with Landsat 4 – has a distinct spectral signature for burned areas.

"The char will show up very clearly in the shortwave," Masek said.

Albury takes a ratio of the two spectral bands, both before and after a fire. Comparing those ratios, he creates a rough map of fire severity, called the Burned Area Reflectance Classification, or BARC. The BAER teams calibrate or adjust the maps based on on-the-ground observations, and then use them to plan time-sensitive restoration projects.

"Without the BARC product the only way for them to assess the fire is on foot or by helicopter," Albury said, noting that doing so is often infeasible for large fires on remote terrain. "It gives them a sense for how much they need to do, and where they need to do it."

While he also employs remote sensing data from other satellites, Landsat is the satellite of choice, Albury said. That's because of the coverage of its spectral bands as well as the free availability of the images – he can sort through to find cloud-free views of that forest at a similar time in the growing season for the pre-fire comparison. And with Landsat 8 online this summer, the new images don't have the gaps present in Landsat 7 imagery. Plus, having two satellites orbiting halves the wait time for post-fire images.

"Now I've got those good, clean, gap-free scenes on a regular basis," Albury said. "That makes an enormous difference for me and for the BAER teams." He's counting on Landsat 8 being closely calibrated to Landsat 7, he said, so he can compare a pre-fire Landsat 8 image with a post-fire Landsat 7 version, or vice versa.

It's one of the reasons why the Landsat team focused on calibrating Landsat 8 so the reflectance data it gathers is measuring landcover and surface properties exactly the same as its predecessors did, Masek said.

"You want to make sure that the same value means the same thing over time and between instruments," he said. "Otherwise, you have to treat each image as a separate problem."

Albury estimates he creates maps for about 100 fires each fire season. For some fires, like the Silver Fire, he creates maps even before the fire is contained so that crews can get to work as quickly as possible.

"The whole basis for this is the need for speed," Luehring of the BAER recovery program said. "In the southwest and southern California, there's pretty much anywhere from four to six weeks after fire season before it starts to rain and flood. If we're going to put anything in place that has a chance of holding back water, or controlling or mitigating the effects of water, we have to do it right away."

The teams focus on areas at "unacceptable risk," she said, which typically means that post-fire flooding would damage communities, watersheds and infrastructure. They identify those risky areas with a combination of the Landsat-derived maps, reports from the field, and topographical maps that identify steep slopes and watersheds.

After the Silver Fire, for example, they identified severely burned areas upstream of a community, campgrounds and forest roads. So crews scattered barley seeds over 11,000 acres, dropped mulch on 800 acres, closed off roads, storm-proofed forest roads, and pumped toilets at risk of flooding.

"It's all hinged on the burn severity map," Luehring said. "It's how you figure out what the watershed response is going to be."

For more information about Landsat, visit:
http://www.nasa.gov/landsat/
Kate Ramsayer
NASA's Goddard Space Flight Center, Greenbelt, Md.

Kate Ramsayer | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/after-a-fire-before-a-flood-nasas-landsat-directs-restoration-to-at-risk-areas/#.UhUn1z_ZXlV

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Intelligent maps will help robots navigate in your home

20.06.2018 | Information Technology

An unlikely marriage among oxides

20.06.2018 | Materials Sciences

Tag it EASI – a new method for accurate protein analysis

20.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>