Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Billion Year Old Piece of North America Traced Back to Antarctica

09.08.2011
An international team of researchers has found the strongest evidence yet that parts of North America and Antarctica were connected 1.1 billion years ago, long before the supercontinent Pangaea formed.

"I can go to the Franklin Mountains in West Texas and stand next to what was once part of Coats Land in Antarctica," said Staci Loewy, a geochemist at California State University, Bakersfield, who led the study. "That's so amazing."

Loewy and her colleagues discovered that rocks collected from both locations have the exact same composition of lead isotopes. Earlier analyses showed the rocks to be the exact same age and have the same chemical and geologic properties. The work, published online (ahead of print) in the September issue of the journal Geology, strengthens support for the so-called SWEAT hypothesis, which posits that ancestral North America and East Antarctica were joined in an earlier supercontinent called Rodinia.

The approximately 1.1 billion year old North American Mid-continent Rift System extends across the continent from the Great Lakes to Texas. Volcanic rocks associated with the rift, which appears to represent an aborted tectonic attempt to split the ancestral North American continent of Laurentia, are well exposed in the Keweenaw Peninsula of the Upper Peninsula of Michigan from which they take their name, the Keweenawan large igneous province. The rift extends in the subsurface beneath Minnesota, Iowa, Nebraska, Kansas and Oklahoma to the Franklin Mountains near El Paso, Texas where related rocks are exposed. In this latest report, Loewy, Ian Dalziel, research professor at The University of Texas at Austin, Richard Hanson of Texas Christian University and colleagues from several overseas institutions, find that rocks barely peeking through the ice in Coats Land, a remote part of the Antarctic continent south of the Atlantic Ocean basin, reflect a former continuation of the North American rift system. Loewy began her collaboration with Dalziel several years ago as a graduate student at the University of Texas at Austin.

Loewy et al. use new lead (Pb) isotopic data from the 1.1-billion-year-old rocks from Coats Land, to constrain the positions of Laurentia (ancestral North America) and Kalahari (ancestral southern Africa) in the 1-billion-year-old supercontinent, Rodinia. The Coats Land rocks are identical in age to both the Keweenawan large igneous province of the North American mid-continent rift and the contemporaneous Umkondo large igneous province of southern Africa. Comparison of the isotopic compositions, however, unequivocally links the Coats Land rocks with the Keweenawan province. Together with paleomagnetic data this suggests that the Coats Land block was a piece of Laurentia near west Texas 1.1 billion years ago. Furthermore, the Coats Land block collided with the Kalahari Precambrian craton of Africa during a 1-billion-year-old collision. Based on this reconstruction, Laurentia collided with Kalahari along Antarctica’s Maud mountain belt, which would represent a continuation of the 1-billion-year-old Grenville mountain belt of eastern and southern North America.

Thus the tiny Coats Land block of Antarctica is a ‘tectonic tracer’ providing critical clues to the geographic relationships between three of the major continents of the planet in the time interval 1.1 – 1.0 billion years ago, just prior to the opening of the Pacific Ocean basin, the hypothesized ‘Snowball Earth’ glaciations, and the rise of multi-cellular life.

Coats Land crustal block, East Antarctica: A tectonic tracer for Laurentia?
Staci L. Loewy, Department of Geology, California State University, Bakersfield, Bakersfield, California 93311, USA, and co-authors (see *below).

E-mail: sloewy@csub.edu.

Abstract is available at http://geology.gsapubs.org/.

Additional contact: co-author Ian W. D. Dalziel, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin.

E-mail: ian@ig.utexas.edu.

Representatives of the media may obtain complementary copies of Geology articles by contacting Christa Stratton at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to Geology in articles published.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

*S.L. Loewy1, I.W.D.Dalziel2, S. Pisarevsky3,7, J.N. Connelly4, J. Tait3, R.E. Hanson5, D. Bullen6

1. Department of Geology, California State University, Bakersfield, Bakersfield, CA 93311

2. Institute for Geophysics, The University of Texas at Austin, Austin, Texas 78758-4445

3. School of GeoScience, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JW, UK

4. Centre for Star and Planet Formation, Copenhagen University, Copenhagen 1350, Denmark

5. School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX 76129

6. School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK

7. School of Earth and Environment, University of Western Australia, Crawley, WA 6009, Australia

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>