Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Billion Year Old Piece of North America Traced Back to Antarctica

09.08.2011
An international team of researchers has found the strongest evidence yet that parts of North America and Antarctica were connected 1.1 billion years ago, long before the supercontinent Pangaea formed.

"I can go to the Franklin Mountains in West Texas and stand next to what was once part of Coats Land in Antarctica," said Staci Loewy, a geochemist at California State University, Bakersfield, who led the study. "That's so amazing."

Loewy and her colleagues discovered that rocks collected from both locations have the exact same composition of lead isotopes. Earlier analyses showed the rocks to be the exact same age and have the same chemical and geologic properties. The work, published online (ahead of print) in the September issue of the journal Geology, strengthens support for the so-called SWEAT hypothesis, which posits that ancestral North America and East Antarctica were joined in an earlier supercontinent called Rodinia.

The approximately 1.1 billion year old North American Mid-continent Rift System extends across the continent from the Great Lakes to Texas. Volcanic rocks associated with the rift, which appears to represent an aborted tectonic attempt to split the ancestral North American continent of Laurentia, are well exposed in the Keweenaw Peninsula of the Upper Peninsula of Michigan from which they take their name, the Keweenawan large igneous province. The rift extends in the subsurface beneath Minnesota, Iowa, Nebraska, Kansas and Oklahoma to the Franklin Mountains near El Paso, Texas where related rocks are exposed. In this latest report, Loewy, Ian Dalziel, research professor at The University of Texas at Austin, Richard Hanson of Texas Christian University and colleagues from several overseas institutions, find that rocks barely peeking through the ice in Coats Land, a remote part of the Antarctic continent south of the Atlantic Ocean basin, reflect a former continuation of the North American rift system. Loewy began her collaboration with Dalziel several years ago as a graduate student at the University of Texas at Austin.

Loewy et al. use new lead (Pb) isotopic data from the 1.1-billion-year-old rocks from Coats Land, to constrain the positions of Laurentia (ancestral North America) and Kalahari (ancestral southern Africa) in the 1-billion-year-old supercontinent, Rodinia. The Coats Land rocks are identical in age to both the Keweenawan large igneous province of the North American mid-continent rift and the contemporaneous Umkondo large igneous province of southern Africa. Comparison of the isotopic compositions, however, unequivocally links the Coats Land rocks with the Keweenawan province. Together with paleomagnetic data this suggests that the Coats Land block was a piece of Laurentia near west Texas 1.1 billion years ago. Furthermore, the Coats Land block collided with the Kalahari Precambrian craton of Africa during a 1-billion-year-old collision. Based on this reconstruction, Laurentia collided with Kalahari along Antarctica’s Maud mountain belt, which would represent a continuation of the 1-billion-year-old Grenville mountain belt of eastern and southern North America.

Thus the tiny Coats Land block of Antarctica is a ‘tectonic tracer’ providing critical clues to the geographic relationships between three of the major continents of the planet in the time interval 1.1 – 1.0 billion years ago, just prior to the opening of the Pacific Ocean basin, the hypothesized ‘Snowball Earth’ glaciations, and the rise of multi-cellular life.

Coats Land crustal block, East Antarctica: A tectonic tracer for Laurentia?
Staci L. Loewy, Department of Geology, California State University, Bakersfield, Bakersfield, California 93311, USA, and co-authors (see *below).

E-mail: sloewy@csub.edu.

Abstract is available at http://geology.gsapubs.org/.

Additional contact: co-author Ian W. D. Dalziel, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin.

E-mail: ian@ig.utexas.edu.

Representatives of the media may obtain complementary copies of Geology articles by contacting Christa Stratton at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to Geology in articles published.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

*S.L. Loewy1, I.W.D.Dalziel2, S. Pisarevsky3,7, J.N. Connelly4, J. Tait3, R.E. Hanson5, D. Bullen6

1. Department of Geology, California State University, Bakersfield, Bakersfield, CA 93311

2. Institute for Geophysics, The University of Texas at Austin, Austin, Texas 78758-4445

3. School of GeoScience, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JW, UK

4. Centre for Star and Planet Formation, Copenhagen University, Copenhagen 1350, Denmark

5. School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX 76129

6. School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK

7. School of Earth and Environment, University of Western Australia, Crawley, WA 6009, Australia

Christa Stratton | EurekAlert!
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>