Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 500 million people might face increasing water scarcity

08.10.2013
Both freshwater availability for many millions of people and the stability of ecosystems such as the Siberian tundra or Indian grasslands are put at risk by climate change.

Even if global warming is limited to 2 degrees above pre-industrial levels, 500 million people could be subject to increased water scarcity – while this number would grow by a further 50 percent if greenhouse-gas emissions are not cut soon.

At 5 degrees global warming almost all ice-free land might be affected by ecosystem change. This is shown by complementary studies now published by scientists of the Potsdam Institute for Climate Impact Research (PIK).

“We managed to quantify a number of crucial impacts of climate change on the global land area,” says Dieter Gerten, lead-author of one of the studies. Mean global warming of 2 degrees, the target set by the international community, is projected to expose an additional 8 percent of humankind to new or increased water scarcity. 3.5 degrees – likely to occur if national emissions reductions remain at currently pledged levels – would affect 11 percent of the world population. 5 degrees could raise this even further to 13 percent.

“If population growth continues, by the end of our century under a business-as-usual scenario these figures would equate to well over one billion lives touched,” Gerten points out. “And this is on top of the more than one billion people already living in water-scarce regions today.” Parts of Asia and North Africa, the Mediterranean and the Middle East are particularly vulnerable.

For the green cover of our planet, even greater changes are in store. “The area at risk of ecosystem transformation is expected to double between global warming of about 3 and 4 degrees,” says Lila Warszawski, lead author of another study that systematically compared different impact models – and the associated uncertainties – in order to gain a fuller picture of the possible consequences of climate change for natural ecosystems. This is part of the international Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP).

A warming of 5 degrees, likely to happen in the next century if climate change goes on unabated, would put nearly all terrestrial natural ecosystems at risk of severe change. “So despite the uncertainties, the findings clearly demonstrate that there is a large difference in the risk of global ecosystem change under a scenario of no climate change mitigation compared to one of ambitious mitigation,” says Sebastian Ostberg, lead author of the third study.

The regions at risk under unabated global warming include the grasslands of Eastern India, shrublands of the Tibetan Plateau, the forests of Northern Canada, the savannas of Ethiopia and Somalia, and the Amazonian rainforest. Many of these are regions of rich and unique biodiversity.

The combined changes to both water availability and ecosystems turn out to be nonlinear. “Our findings support the assertion that we are fundamentally destabilizing our natural systems – we are leaving the world as we know it,” says Wolfgang Lucht, one of the authors and co-chair of PIK’s Research Domain of Earth System Analysis.

The studies use a novel methodological approach, introducing new measures of risk based on changes of vegetation structure and flows and stores of carbon and water. To this end, biosphere simulation models were used to compare hundreds of climate change scenarios and highlight which regions may first face critical impacts of climate change.

“The increase in water scarcity that we found will impact on the livelihoods of a huge number of people, with the global poor being the most vulnerable,” says Hans Joachim Schellnhuber, one of the co-authors and director of PIK. This might get buffered to some extent through adaptation measures such as expanding of irrigated cropland. However, such an expansion would further increase the pressure on Earth’s ecosystems and water resources. “Now this is not a question of ducks and daisies, but of our unique natural heritage, the very basis of life. Therefore, greenhouse-gas emissions have to be reduced substantially, and soon.”

Article: Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z.W., Rastgooy, J., Warren, R., Schellnhuber, H.J. (2013): Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 8 [doi:10.1088/1748-9326/8/3/034032]

Article: Ostberg, S., Lucht, W., Schaphoff, S., Gerten, D. (2013): Critical impacts of global warming on land ecosystems. Earth System Dynamics, 4, 541-565, [doi:10.5194/esdd-4-541-2013]

Article: Warszawski, L., Friend, A., Ostberg, S., Frieler, K., Lucht, W., Schaphoff, S., Beerling, D., Cadule, P., Ciais, P., Clark, D.B., Kahana, R., Ito, A., Keribin, R., Kleidon, A., Lomas, M., Nishina, K., Pavlick, R., Rademacher, T.T., Piontek, F., Schewe, J., Serdeczny, O., Buechner, M., Schellnhuber, H.J. (2013): A multi-model analysis of risk of ecosystem shifts under climate change. In: Environmental Research Letters (accepted)

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://iopscience.iop.org/1748-9326/8/3/034032/article
(Link to the article by Gerten et al)
http://www.earth-syst-dynam.net/recent_papers.html
(Link to the article by Ostberg et al once it is published on Tuesday afternoon)

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>