Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 500 million people might face increasing water scarcity

08.10.2013
Both freshwater availability for many millions of people and the stability of ecosystems such as the Siberian tundra or Indian grasslands are put at risk by climate change.

Even if global warming is limited to 2 degrees above pre-industrial levels, 500 million people could be subject to increased water scarcity – while this number would grow by a further 50 percent if greenhouse-gas emissions are not cut soon.

At 5 degrees global warming almost all ice-free land might be affected by ecosystem change. This is shown by complementary studies now published by scientists of the Potsdam Institute for Climate Impact Research (PIK).

“We managed to quantify a number of crucial impacts of climate change on the global land area,” says Dieter Gerten, lead-author of one of the studies. Mean global warming of 2 degrees, the target set by the international community, is projected to expose an additional 8 percent of humankind to new or increased water scarcity. 3.5 degrees – likely to occur if national emissions reductions remain at currently pledged levels – would affect 11 percent of the world population. 5 degrees could raise this even further to 13 percent.

“If population growth continues, by the end of our century under a business-as-usual scenario these figures would equate to well over one billion lives touched,” Gerten points out. “And this is on top of the more than one billion people already living in water-scarce regions today.” Parts of Asia and North Africa, the Mediterranean and the Middle East are particularly vulnerable.

For the green cover of our planet, even greater changes are in store. “The area at risk of ecosystem transformation is expected to double between global warming of about 3 and 4 degrees,” says Lila Warszawski, lead author of another study that systematically compared different impact models – and the associated uncertainties – in order to gain a fuller picture of the possible consequences of climate change for natural ecosystems. This is part of the international Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP).

A warming of 5 degrees, likely to happen in the next century if climate change goes on unabated, would put nearly all terrestrial natural ecosystems at risk of severe change. “So despite the uncertainties, the findings clearly demonstrate that there is a large difference in the risk of global ecosystem change under a scenario of no climate change mitigation compared to one of ambitious mitigation,” says Sebastian Ostberg, lead author of the third study.

The regions at risk under unabated global warming include the grasslands of Eastern India, shrublands of the Tibetan Plateau, the forests of Northern Canada, the savannas of Ethiopia and Somalia, and the Amazonian rainforest. Many of these are regions of rich and unique biodiversity.

The combined changes to both water availability and ecosystems turn out to be nonlinear. “Our findings support the assertion that we are fundamentally destabilizing our natural systems – we are leaving the world as we know it,” says Wolfgang Lucht, one of the authors and co-chair of PIK’s Research Domain of Earth System Analysis.

The studies use a novel methodological approach, introducing new measures of risk based on changes of vegetation structure and flows and stores of carbon and water. To this end, biosphere simulation models were used to compare hundreds of climate change scenarios and highlight which regions may first face critical impacts of climate change.

“The increase in water scarcity that we found will impact on the livelihoods of a huge number of people, with the global poor being the most vulnerable,” says Hans Joachim Schellnhuber, one of the co-authors and director of PIK. This might get buffered to some extent through adaptation measures such as expanding of irrigated cropland. However, such an expansion would further increase the pressure on Earth’s ecosystems and water resources. “Now this is not a question of ducks and daisies, but of our unique natural heritage, the very basis of life. Therefore, greenhouse-gas emissions have to be reduced substantially, and soon.”

Article: Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z.W., Rastgooy, J., Warren, R., Schellnhuber, H.J. (2013): Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 8 [doi:10.1088/1748-9326/8/3/034032]

Article: Ostberg, S., Lucht, W., Schaphoff, S., Gerten, D. (2013): Critical impacts of global warming on land ecosystems. Earth System Dynamics, 4, 541-565, [doi:10.5194/esdd-4-541-2013]

Article: Warszawski, L., Friend, A., Ostberg, S., Frieler, K., Lucht, W., Schaphoff, S., Beerling, D., Cadule, P., Ciais, P., Clark, D.B., Kahana, R., Ito, A., Keribin, R., Kleidon, A., Lomas, M., Nishina, K., Pavlick, R., Rademacher, T.T., Piontek, F., Schewe, J., Serdeczny, O., Buechner, M., Schellnhuber, H.J. (2013): A multi-model analysis of risk of ecosystem shifts under climate change. In: Environmental Research Letters (accepted)

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://iopscience.iop.org/1748-9326/8/3/034032/article
(Link to the article by Gerten et al)
http://www.earth-syst-dynam.net/recent_papers.html
(Link to the article by Ostberg et al once it is published on Tuesday afternoon)

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>