Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than 500 million people might face increasing water scarcity

08.10.2013
Both freshwater availability for many millions of people and the stability of ecosystems such as the Siberian tundra or Indian grasslands are put at risk by climate change.

Even if global warming is limited to 2 degrees above pre-industrial levels, 500 million people could be subject to increased water scarcity – while this number would grow by a further 50 percent if greenhouse-gas emissions are not cut soon.

At 5 degrees global warming almost all ice-free land might be affected by ecosystem change. This is shown by complementary studies now published by scientists of the Potsdam Institute for Climate Impact Research (PIK).

“We managed to quantify a number of crucial impacts of climate change on the global land area,” says Dieter Gerten, lead-author of one of the studies. Mean global warming of 2 degrees, the target set by the international community, is projected to expose an additional 8 percent of humankind to new or increased water scarcity. 3.5 degrees – likely to occur if national emissions reductions remain at currently pledged levels – would affect 11 percent of the world population. 5 degrees could raise this even further to 13 percent.

“If population growth continues, by the end of our century under a business-as-usual scenario these figures would equate to well over one billion lives touched,” Gerten points out. “And this is on top of the more than one billion people already living in water-scarce regions today.” Parts of Asia and North Africa, the Mediterranean and the Middle East are particularly vulnerable.

For the green cover of our planet, even greater changes are in store. “The area at risk of ecosystem transformation is expected to double between global warming of about 3 and 4 degrees,” says Lila Warszawski, lead author of another study that systematically compared different impact models – and the associated uncertainties – in order to gain a fuller picture of the possible consequences of climate change for natural ecosystems. This is part of the international Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP).

A warming of 5 degrees, likely to happen in the next century if climate change goes on unabated, would put nearly all terrestrial natural ecosystems at risk of severe change. “So despite the uncertainties, the findings clearly demonstrate that there is a large difference in the risk of global ecosystem change under a scenario of no climate change mitigation compared to one of ambitious mitigation,” says Sebastian Ostberg, lead author of the third study.

The regions at risk under unabated global warming include the grasslands of Eastern India, shrublands of the Tibetan Plateau, the forests of Northern Canada, the savannas of Ethiopia and Somalia, and the Amazonian rainforest. Many of these are regions of rich and unique biodiversity.

The combined changes to both water availability and ecosystems turn out to be nonlinear. “Our findings support the assertion that we are fundamentally destabilizing our natural systems – we are leaving the world as we know it,” says Wolfgang Lucht, one of the authors and co-chair of PIK’s Research Domain of Earth System Analysis.

The studies use a novel methodological approach, introducing new measures of risk based on changes of vegetation structure and flows and stores of carbon and water. To this end, biosphere simulation models were used to compare hundreds of climate change scenarios and highlight which regions may first face critical impacts of climate change.

“The increase in water scarcity that we found will impact on the livelihoods of a huge number of people, with the global poor being the most vulnerable,” says Hans Joachim Schellnhuber, one of the co-authors and director of PIK. This might get buffered to some extent through adaptation measures such as expanding of irrigated cropland. However, such an expansion would further increase the pressure on Earth’s ecosystems and water resources. “Now this is not a question of ducks and daisies, but of our unique natural heritage, the very basis of life. Therefore, greenhouse-gas emissions have to be reduced substantially, and soon.”

Article: Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., Kundzewicz, Z.W., Rastgooy, J., Warren, R., Schellnhuber, H.J. (2013): Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 8 [doi:10.1088/1748-9326/8/3/034032]

Article: Ostberg, S., Lucht, W., Schaphoff, S., Gerten, D. (2013): Critical impacts of global warming on land ecosystems. Earth System Dynamics, 4, 541-565, [doi:10.5194/esdd-4-541-2013]

Article: Warszawski, L., Friend, A., Ostberg, S., Frieler, K., Lucht, W., Schaphoff, S., Beerling, D., Cadule, P., Ciais, P., Clark, D.B., Kahana, R., Ito, A., Keribin, R., Kleidon, A., Lomas, M., Nishina, K., Pavlick, R., Rademacher, T.T., Piontek, F., Schewe, J., Serdeczny, O., Buechner, M., Schellnhuber, H.J. (2013): A multi-model analysis of risk of ecosystem shifts under climate change. In: Environmental Research Letters (accepted)

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://iopscience.iop.org/1748-9326/8/3/034032/article
(Link to the article by Gerten et al)
http://www.earth-syst-dynam.net/recent_papers.html
(Link to the article by Ostberg et al once it is published on Tuesday afternoon)

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>