Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2013 Wintertime Arctic Sea Ice Maximum Fifth Lowest on Record

04.04.2013
Last September, at the end of the northern hemisphere summer, the Arctic Ocean’s icy cover shrank to its lowest extent on record, continuing a long-term trend and diminishing to about half the size of the average summertime extent from 1979 to 2000.

During the cold and dark of Arctic winter, sea ice refreezes and achieves its maximum extent, usually in late February or early March. According to a NASA analysis, this year the annual maximum extent was reached on Feb. 28 and it was the fifth lowest sea ice winter extent in the past 35 years.

The new maximum —5.82 million square miles (15.09 million square kilometers)— is in line with a continuing trend in declining winter Arctic sea ice extent: nine of the ten smallest recorded maximums have occurred during the last decade. The 2013 winter extent is 144,402 square miles (374,000 square kilometers) below the average annual maximum extent for the last three decades.

"The Arctic region is in darkness during winter and the predominant type of radiation is long-wave or infrared, which is associated with greenhouse warming," said Joey Comiso, senior scientist at NASA Goddard Space Flight Center, Greenbelt, Md., and a principal investigator of NASA’s Cryospheric Sciences Program. "A decline in the sea ice cover in winter is thus a manifestation of the effect of the increasing greenhouse gases on sea ice."

Satellite data retrieved since the late 1970s show that sea ice extent, which includes all areas of the Arctic Ocean where ice covers at least 15 percent of the ocean surface, is diminishing. This decline is occurring at a much faster pace in the summer than in the winter; in fact, some models predict that the Arctic Ocean could be ice-free in the summer in just a few decades.

The behavior of the winter sea ice maximum is not necessarily predictive of the following melt season. The record shows there are times when an unusually large maximum is followed by an unusually low minimum, and vice versa.

"You would think the two should be related, because if you have extensive maximum, that means you had an unusually cold winter and that the ice would have grown thicker than normal. And you would expect thicker ice to be more difficult to melt in the summer," Comiso said. "But it isn’t as simple as that. You can have a lot of other forces that affect the ice cover in the summer, like the strong storm we got in August last year, which split a huge segment of ice that then got transported south to warmer waters, where it melted."

The NASA Goddard sea ice record is one of several analyses, along with those produced by the National Snow and Ice Data Center (NSIDC) in Boulder, Colo. The two institutions use slightly different methods in their sea ice tally, but overall, their trends show close agreement. NSIDC announced that Arctic sea ice reached its winter maximum on Mar. 15, at an extent of 5.84 million square miles (15.13 million square kilometers) – a difference of less than half a percent compared to the NASA maximum extent.

Another measurement that allows researchers to analyze the evolution of the sea ice maximum is sea ice "area." The measurement of area, as opposed to extent, discards regions of open water among ice floes and only tallies the parts of the Arctic Ocean that are completely covered by ice. The winter maximum area for 2013 was 5.53 million square miles (14.3 million square kilometers), also the fifth lowest since 1979.

While the extent of winter sea ice has trended downward at a less drastic rate than summer sea ice, the fraction of the sea ice cover that has survived at least two melt seasons remains much smaller than at the beginning of the satellite era. This older, thicker "multi-year ice" – which buttresses the ice cap against more severe melting in the summer – grew slightly this past winter and now covers 1.03 million square miles (2.67 million square kilometers), or about 39,000 square miles more than last winter. But its extent is still less than half of what it was in the early 1980s.

"I think the multi-year ice cover will continue to decline in the upcoming years," Comiso said. "There’s a little bit of oscillation, so there still might be a small gain in some years, but it continues to go down and before you know it we’ll lose the multi-year ice altogether."

This winter, the negative phase of the Arctic Oscillation kept temperatures warmer than average in the northernmost latitudes. A series of storms in February and early March opened large cracks in the ice covering the Beaufort Sea along the northern coasts of Alaska and Canada, in an area of thin seasonal ice. The large cracks quickly froze over, but these new layers of thin ice might melt again now that the sun has re-appeared in the Arctic, which could split the ice pack into smaller ice floes.

"If you put a large chunk of ice in a glass of water, it is going to melt slowly, but if you break up the ice into small pieces, it will melt faster," said Nathan Kurtz, a sea ice scientist at NASA Goddard. "If the ice pack breaks up like that and the melt season begins with smaller-sized floes, that could impact melt."

In the upcoming weeks, Kurtz will analyze data collected over the Beaufort Sea by NASA’s Operation IceBridge, an airborne mission that is currently surveying Arctic sea ice and the Greenland ice sheet, to see if the sea ice in the cracked area was abnormally thin.

The sea ice maximum extent analysis produced at NASA Goddard is compiled from passive microwave data from NASA's Nimbus-7 satellite and the U.S. Department of Defense's Defense Meteorological Satellite Program. The record, which began in November 1978, shows an overall downward trend of 2.1 percent per decade in the size of the maximum winter extent, a decline that accelerated after 2004.

Maria-Jose Vinas
NASA Goddard Space Flight Center, Greenbelt, Md.

Maria-Jose Vinas | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/arctic-seaicemax-2013.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>