Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracking' Mobilizes Uranium in Marcellus Shale

26.10.2010
Findings raise new concern: could uranium show up in groundwater?

Scientific and political disputes over drilling Marcellus shale for natural gas have focused primarily on the environmental effects of pumping millions of gallons of water and chemicals deep underground to blast through rocks to release the natural gas.

But University at Buffalo researchers have now found that that process -- called hydraulic fracturing or "fracking"-- also causes uranium that is naturally trapped inside Marcellus shale to be released, raising additional environmental concerns.

The research will be presented at the annual meeting of the Geological Society of America in Denver on Nov. 2.

Marcellus shale is a massive rock formation that stretches from New York through Pennsylvania, Ohio and West Virginia, and which is often described as the nation's largest source of natural gas.

"Marcellus shale naturally traps metals such as uranium and at levels higher than usually found naturally, but lower than manmade contamination levels," says Tracy Bank, PhD, assistant professor of geology in UB's College of Arts and Sciences and lead researcher. "My question was, if they start drilling and pumping millions of gallons of water into these underground rocks, will that force the uranium into the soluble phase and mobilize it? Will uranium then show up in groundwater?"

To find out, Bank and her colleagues at UB scanned the surfaces of Marcellus shale samples from Western New York and Pennsylvania. Using sensitive chemical instruments, they created a chemical map of the surfaces to determine the precise location in the shale of the hydrocarbons, the organic compounds containing natural gas.

"We found that the uranium and the hydrocarbons are in the same physical space," says Bank. "We found that they are not just physically -- but also chemically -- bound.

"That led me to believe that uranium in solution could be more of an issue because the process of drilling to extract the hydrocarbons could start mobilizing the metals as well, forcing them into the soluble phase and causing them to move around."

When Bank and her colleagues reacted samples in the lab with surrogate drilling fluids, they found that the uranium was indeed, being solubilized.

In addition, she says, when the millions of gallons of water used in hydraulic fracturing come back to the surface, it could contain uranium contaminants, potentially polluting streams and other ecosystems and generating hazardous waste.

The research required the use of very sophisticated methods of analysis, including one called Time-of-Flight Secondary Ion Mass Spectrometry, or ToF-SIMS, in the laboratory of Joseph A. Gardella Jr., Larkin Professor of Chemistry at UB.

The UB research is the first to map samples using this technique, which identified the precise location of the uranium.

"Even though at these levels, uranium is not a radioactive risk, it is still a toxic, deadly metal," Bank concludes. "We need a fundamental understanding of how uranium exists in shale. The more we understand about how it exists, the more we can better predict how it will react to 'fracking.'"

Bank conducted the experiments with UB Department of Geology graduate students Thomas Malizia and Lauren Fortson, and Lisa Andresky, an undergraduate student from Slippery Rock University in Pennsylvania. Andresky worked in Bank's lab during the summer while on a National Science Foundation-funded Research Experience for Undergraduates in UB's Ecosystem Restoration through Interdisciplinary Exchange (ERIE) program.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/11885

More articles from Earth Sciences:

nachricht Comparing Climate Models to Real World Shows Differences in Precipitation Intensity
17.04.2015 | Department of Energy, Office of Science

nachricht GPM sees wind shear affecting remnants of Extra-tropical Cyclone Joalane
16.04.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>