Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Fracking' Mobilizes Uranium in Marcellus Shale

26.10.2010
Findings raise new concern: could uranium show up in groundwater?

Scientific and political disputes over drilling Marcellus shale for natural gas have focused primarily on the environmental effects of pumping millions of gallons of water and chemicals deep underground to blast through rocks to release the natural gas.

But University at Buffalo researchers have now found that that process -- called hydraulic fracturing or "fracking"-- also causes uranium that is naturally trapped inside Marcellus shale to be released, raising additional environmental concerns.

The research will be presented at the annual meeting of the Geological Society of America in Denver on Nov. 2.

Marcellus shale is a massive rock formation that stretches from New York through Pennsylvania, Ohio and West Virginia, and which is often described as the nation's largest source of natural gas.

"Marcellus shale naturally traps metals such as uranium and at levels higher than usually found naturally, but lower than manmade contamination levels," says Tracy Bank, PhD, assistant professor of geology in UB's College of Arts and Sciences and lead researcher. "My question was, if they start drilling and pumping millions of gallons of water into these underground rocks, will that force the uranium into the soluble phase and mobilize it? Will uranium then show up in groundwater?"

To find out, Bank and her colleagues at UB scanned the surfaces of Marcellus shale samples from Western New York and Pennsylvania. Using sensitive chemical instruments, they created a chemical map of the surfaces to determine the precise location in the shale of the hydrocarbons, the organic compounds containing natural gas.

"We found that the uranium and the hydrocarbons are in the same physical space," says Bank. "We found that they are not just physically -- but also chemically -- bound.

"That led me to believe that uranium in solution could be more of an issue because the process of drilling to extract the hydrocarbons could start mobilizing the metals as well, forcing them into the soluble phase and causing them to move around."

When Bank and her colleagues reacted samples in the lab with surrogate drilling fluids, they found that the uranium was indeed, being solubilized.

In addition, she says, when the millions of gallons of water used in hydraulic fracturing come back to the surface, it could contain uranium contaminants, potentially polluting streams and other ecosystems and generating hazardous waste.

The research required the use of very sophisticated methods of analysis, including one called Time-of-Flight Secondary Ion Mass Spectrometry, or ToF-SIMS, in the laboratory of Joseph A. Gardella Jr., Larkin Professor of Chemistry at UB.

The UB research is the first to map samples using this technique, which identified the precise location of the uranium.

"Even though at these levels, uranium is not a radioactive risk, it is still a toxic, deadly metal," Bank concludes. "We need a fundamental understanding of how uranium exists in shale. The more we understand about how it exists, the more we can better predict how it will react to 'fracking.'"

Bank conducted the experiments with UB Department of Geology graduate students Thomas Malizia and Lauren Fortson, and Lisa Andresky, an undergraduate student from Slippery Rock University in Pennsylvania. Andresky worked in Bank's lab during the summer while on a National Science Foundation-funded Research Experience for Undergraduates in UB's Ecosystem Restoration through Interdisciplinary Exchange (ERIE) program.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu/news/11885

More articles from Earth Sciences:

nachricht NASA sees Hurricane Jimena's large eye
01.09.2015 | NASA/Goddard Space Flight Center

nachricht First global antineutrino emission map highlights Earth's energy budget
01.09.2015 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>