Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chemical Equator' splits northern from southern air pollution

24.09.2008
Scientists have detected a 'chemical equator' that divides the polluted air of the Northern Hemisphere from the largely uncontaminated atmosphere of the Southern Hemisphere.

Their findings show for the first time that the chemical and meteorological boundaries between the two air masses are not necessarily the same.

Observations of the novel boundary will provide important clues to help scientists to model simulations of the movement of pollutants in the atmosphere more accurately, and to assess the impact of pollution on climate, the researchers say.

A scientific paper about the chemical equator is to be published in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union (AGU).

Scientists had previously thought that a meteorological feature-- the Intertropical Convergence Zone (ITCZ)--formed the boundary between the polluted air of the Northern Hemisphere and the clearer air of the Southern Hemisphere. The ITCZ is a cloudy region circling the globe where the trade winds from each hemisphere meet. It is characterized by rapid vertical uplift and heavy rainfall, and acts as a meteorological barrier to pollutant transport between the hemispheres.

But, in cloudless Western Pacific skies well to the north of the ITCZ, Jacqueline Hamilton of York University and her colleagues found evidence for an atmospheric chemical equator around 50 kilometers (31 miles) wide.

Across that newfound borderline, air quality differed dramatically. For instance, carbon monoxide, a tracer of combustion, increased from 40 parts per billion to the south, to 160 parts per billion in the north. The difference in pollutant levels was increased by extensive forest fires to the north of the boundary and very clean air south of the chemical equator being pulled north from the Southern Indian Ocean by a land based cyclone in northern Australia.

The scientists discovered evidence of the chemical equator using sensors on a specially equipped airplane during a series of flights north of Darwin, a city on the northern coast of Australia. At the time, the ITCZ was situated well to the south over central Australia.

Researchers from the universities of York, Manchester, Cambridge, Leicester, and Leeds--all in the United Kingdom--collaborated in the study.

"The shallow waters of the Western Pacific, known as the Tropical Warm Pool, have some of highest sea surface temperatures in the world, which result in the region's weather being dominated by storm systems," says Hamilton, lead author of the scientific paper. "The position of the chemical equator was to the south of this stormy region."

"This means that these powerful storms may act as pumps, lifting highly polluted air from the surface to high in the atmosphere where pollutants will remain longer and may have a global influence," Hamilton notes. "To improve global simulations of pollutant transport, it is vital to know when the chemical and meteorological boundaries are in different locations."

This research was funded by the United Kingdom's Natural Environment Research Council (NERC) as part of the ACTIVE project (Aerosol and Chemical Transport in Tropical Convection).

Other partners include the Australian Bureau of Meteorology and Flinders University in Adelaide, Australia. Flights were carried out onboard the NERC Airborne Research and Survey Facility Dornier 228 aircraft.

Title:
"Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region"
Authors:
Jacqueline F. Hamilton, Nicola M. Watson, James D. Lee, Julie E.
Saxton, and Alastair C. Lewis: Department of Chemistry, University of York, Heslington, York, United Kingdom;

Grant Allen, Geraint Vaughan, Keith N. Bower, Michael J. Flynn, and Jonathan Crosier: School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom;

Glenn D. Carver and Neil R. P. Harris: Chemistry Department, University of Cambridge, Cambridge, United Kingdom;

Robert J. Parker and John J. Remedios: Earth Observation Science, Space Research Centre, Department of Physics &Astronomy, University of Leicester, Leicester, UK.

Nigel A.D. Richards: Institute for Atmospheric Science, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, United Kingdom.

Citation:
Hamilton, J. F., G. Allen, N. M. Watson, J. D. Lee, J. E. Saxton, A.
C. Lewis, G. Vaughan, K. N. Bower, M. Flynn, J. Crosier, G. D.
Carver, N. R. P. Harris, R. J. Parker, J. Remedios, and N. Richards (2008), Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region, J. Geophys. Res., doi:10.1029/2008JD009940, in press.
Contact information for coauthors:
Jacqueline Hamilton: Lecturer, Department of Chemistry, University of York, phone: +44 (0)1904 432575, email:

jfh2@york.ac.uk

Alastair Lewis: Professor, Department of Chemistry, University of York; Composition Director, National Centre for Atmospheric Science; phone: +44 (0)1904 432522

email: acl5@york.ac.uk

Geraint Vaughan: Professor, School of Earth, Atmospheric and Environmental Sciences, University of Manchester; Weather Director, National Centre for Atmospheric Science; phone: +44 (0)

161 306 3931, email: geraint.vaughan@manchester.ac.uk

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>