Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chemical Equator' splits northern from southern air pollution

24.09.2008
Scientists have detected a 'chemical equator' that divides the polluted air of the Northern Hemisphere from the largely uncontaminated atmosphere of the Southern Hemisphere.

Their findings show for the first time that the chemical and meteorological boundaries between the two air masses are not necessarily the same.

Observations of the novel boundary will provide important clues to help scientists to model simulations of the movement of pollutants in the atmosphere more accurately, and to assess the impact of pollution on climate, the researchers say.

A scientific paper about the chemical equator is to be published in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union (AGU).

Scientists had previously thought that a meteorological feature-- the Intertropical Convergence Zone (ITCZ)--formed the boundary between the polluted air of the Northern Hemisphere and the clearer air of the Southern Hemisphere. The ITCZ is a cloudy region circling the globe where the trade winds from each hemisphere meet. It is characterized by rapid vertical uplift and heavy rainfall, and acts as a meteorological barrier to pollutant transport between the hemispheres.

But, in cloudless Western Pacific skies well to the north of the ITCZ, Jacqueline Hamilton of York University and her colleagues found evidence for an atmospheric chemical equator around 50 kilometers (31 miles) wide.

Across that newfound borderline, air quality differed dramatically. For instance, carbon monoxide, a tracer of combustion, increased from 40 parts per billion to the south, to 160 parts per billion in the north. The difference in pollutant levels was increased by extensive forest fires to the north of the boundary and very clean air south of the chemical equator being pulled north from the Southern Indian Ocean by a land based cyclone in northern Australia.

The scientists discovered evidence of the chemical equator using sensors on a specially equipped airplane during a series of flights north of Darwin, a city on the northern coast of Australia. At the time, the ITCZ was situated well to the south over central Australia.

Researchers from the universities of York, Manchester, Cambridge, Leicester, and Leeds--all in the United Kingdom--collaborated in the study.

"The shallow waters of the Western Pacific, known as the Tropical Warm Pool, have some of highest sea surface temperatures in the world, which result in the region's weather being dominated by storm systems," says Hamilton, lead author of the scientific paper. "The position of the chemical equator was to the south of this stormy region."

"This means that these powerful storms may act as pumps, lifting highly polluted air from the surface to high in the atmosphere where pollutants will remain longer and may have a global influence," Hamilton notes. "To improve global simulations of pollutant transport, it is vital to know when the chemical and meteorological boundaries are in different locations."

This research was funded by the United Kingdom's Natural Environment Research Council (NERC) as part of the ACTIVE project (Aerosol and Chemical Transport in Tropical Convection).

Other partners include the Australian Bureau of Meteorology and Flinders University in Adelaide, Australia. Flights were carried out onboard the NERC Airborne Research and Survey Facility Dornier 228 aircraft.

Title:
"Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region"
Authors:
Jacqueline F. Hamilton, Nicola M. Watson, James D. Lee, Julie E.
Saxton, and Alastair C. Lewis: Department of Chemistry, University of York, Heslington, York, United Kingdom;

Grant Allen, Geraint Vaughan, Keith N. Bower, Michael J. Flynn, and Jonathan Crosier: School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom;

Glenn D. Carver and Neil R. P. Harris: Chemistry Department, University of Cambridge, Cambridge, United Kingdom;

Robert J. Parker and John J. Remedios: Earth Observation Science, Space Research Centre, Department of Physics &Astronomy, University of Leicester, Leicester, UK.

Nigel A.D. Richards: Institute for Atmospheric Science, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, United Kingdom.

Citation:
Hamilton, J. F., G. Allen, N. M. Watson, J. D. Lee, J. E. Saxton, A.
C. Lewis, G. Vaughan, K. N. Bower, M. Flynn, J. Crosier, G. D.
Carver, N. R. P. Harris, R. J. Parker, J. Remedios, and N. Richards (2008), Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region, J. Geophys. Res., doi:10.1029/2008JD009940, in press.
Contact information for coauthors:
Jacqueline Hamilton: Lecturer, Department of Chemistry, University of York, phone: +44 (0)1904 432575, email:

jfh2@york.ac.uk

Alastair Lewis: Professor, Department of Chemistry, University of York; Composition Director, National Centre for Atmospheric Science; phone: +44 (0)1904 432522

email: acl5@york.ac.uk

Geraint Vaughan: Professor, School of Earth, Atmospheric and Environmental Sciences, University of Manchester; Weather Director, National Centre for Atmospheric Science; phone: +44 (0)

161 306 3931, email: geraint.vaughan@manchester.ac.uk

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>