Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Chemical Equator' splits northern from southern air pollution

Scientists have detected a 'chemical equator' that divides the polluted air of the Northern Hemisphere from the largely uncontaminated atmosphere of the Southern Hemisphere.

Their findings show for the first time that the chemical and meteorological boundaries between the two air masses are not necessarily the same.

Observations of the novel boundary will provide important clues to help scientists to model simulations of the movement of pollutants in the atmosphere more accurately, and to assess the impact of pollution on climate, the researchers say.

A scientific paper about the chemical equator is to be published in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union (AGU).

Scientists had previously thought that a meteorological feature-- the Intertropical Convergence Zone (ITCZ)--formed the boundary between the polluted air of the Northern Hemisphere and the clearer air of the Southern Hemisphere. The ITCZ is a cloudy region circling the globe where the trade winds from each hemisphere meet. It is characterized by rapid vertical uplift and heavy rainfall, and acts as a meteorological barrier to pollutant transport between the hemispheres.

But, in cloudless Western Pacific skies well to the north of the ITCZ, Jacqueline Hamilton of York University and her colleagues found evidence for an atmospheric chemical equator around 50 kilometers (31 miles) wide.

Across that newfound borderline, air quality differed dramatically. For instance, carbon monoxide, a tracer of combustion, increased from 40 parts per billion to the south, to 160 parts per billion in the north. The difference in pollutant levels was increased by extensive forest fires to the north of the boundary and very clean air south of the chemical equator being pulled north from the Southern Indian Ocean by a land based cyclone in northern Australia.

The scientists discovered evidence of the chemical equator using sensors on a specially equipped airplane during a series of flights north of Darwin, a city on the northern coast of Australia. At the time, the ITCZ was situated well to the south over central Australia.

Researchers from the universities of York, Manchester, Cambridge, Leicester, and Leeds--all in the United Kingdom--collaborated in the study.

"The shallow waters of the Western Pacific, known as the Tropical Warm Pool, have some of highest sea surface temperatures in the world, which result in the region's weather being dominated by storm systems," says Hamilton, lead author of the scientific paper. "The position of the chemical equator was to the south of this stormy region."

"This means that these powerful storms may act as pumps, lifting highly polluted air from the surface to high in the atmosphere where pollutants will remain longer and may have a global influence," Hamilton notes. "To improve global simulations of pollutant transport, it is vital to know when the chemical and meteorological boundaries are in different locations."

This research was funded by the United Kingdom's Natural Environment Research Council (NERC) as part of the ACTIVE project (Aerosol and Chemical Transport in Tropical Convection).

Other partners include the Australian Bureau of Meteorology and Flinders University in Adelaide, Australia. Flights were carried out onboard the NERC Airborne Research and Survey Facility Dornier 228 aircraft.

"Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region"
Jacqueline F. Hamilton, Nicola M. Watson, James D. Lee, Julie E.
Saxton, and Alastair C. Lewis: Department of Chemistry, University of York, Heslington, York, United Kingdom;

Grant Allen, Geraint Vaughan, Keith N. Bower, Michael J. Flynn, and Jonathan Crosier: School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom;

Glenn D. Carver and Neil R. P. Harris: Chemistry Department, University of Cambridge, Cambridge, United Kingdom;

Robert J. Parker and John J. Remedios: Earth Observation Science, Space Research Centre, Department of Physics &Astronomy, University of Leicester, Leicester, UK.

Nigel A.D. Richards: Institute for Atmospheric Science, School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, United Kingdom.

Hamilton, J. F., G. Allen, N. M. Watson, J. D. Lee, J. E. Saxton, A.
C. Lewis, G. Vaughan, K. N. Bower, M. Flynn, J. Crosier, G. D.
Carver, N. R. P. Harris, R. J. Parker, J. Remedios, and N. Richards (2008), Observations of an Atmospheric Chemical Equator and its Implications for the Tropical Warm Pool Region, J. Geophys. Res., doi:10.1029/2008JD009940, in press.
Contact information for coauthors:
Jacqueline Hamilton: Lecturer, Department of Chemistry, University of York, phone: +44 (0)1904 432575, email:

Alastair Lewis: Professor, Department of Chemistry, University of York; Composition Director, National Centre for Atmospheric Science; phone: +44 (0)1904 432522


Geraint Vaughan: Professor, School of Earth, Atmospheric and Environmental Sciences, University of Manchester; Weather Director, National Centre for Atmospheric Science; phone: +44 (0)

161 306 3931, email:

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Jacobs University supports new mapping of Mars, Mercury and the Moon
21.03.2018 | Jacobs University Bremen gGmbH

nachricht Thawing permafrost produces more methane than expected
20.03.2018 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>