Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winner of Sofja Kovalevskaja Award to take up research at Mainz University

08.09.2014

Helen May-Simera wins prestigious research award from the Humboldt Foundation for her research work on cilia and related disorders

Biologist Dr. Helen May-Simera is the recipient of a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation. She will use this to set up a junior research group at Johannes Gutenberg University Mainz (JGU) that will investigate the causes of eye disorders that are associated with cilia dysfunction.


Sofja Kovalevskaja Award winner Dr. Helen May-Simera

photo: private

Prior to receiving the award, May-Simera was working at the National Eye Institute (NEI), an institute at the American National Institutes of Health (NIH). In Mainz, she will be heading up her own research group of young scientists in the Institute for Zoology, thus further enhancing the focus set on the molecular biology of cilia and the related disorders.

At Mainz University, May-Simera will also have access to the existing expertise and the national and European networks maintained by the Mainz researchers. Over the next five years, the junior researcher will receive prize money totaling EUR 1.65 million designed to finance her research project.

The Sofja Kovalevskaja Award is financed by the Federal Ministry of Education and Research (BMBF) and is awarded by the Alexander von Humboldt Foundation. It is one of the most highly endowed German academic prizes and is used to promote the work of outstanding junior researchers under unique conditions.

For five years they can undertake their own research project and form a working group at an institution of their choice in Germany – independently and without administrative constraints. The award is used to honor the outstanding academic achievements of exceptionally promising young scholars from abroad. This year, a total of eleven young academics received the award, the ceremony for which will take place in Berlin on November 11, 2014.

The application submitted by Helen May-Simera to the Humboldt Foundation covers a research project in which she intends to investigate signal processing in the retinal pigment epithelium, a layer of the retina. The main aim is to discover the extent to which cilia play a role in the transmission of signals. Primary cilia first became the focus of research in the early 1990s once their versatile functions had been identified.

Cilia are small organelles that project out from the cell surface and act like antennae; they receive signals from the environment, process them, and pass them on into the interior of the cell. Primary cilia dysfunction can have serious consequences for health resulting in so-called ciliopathy syndromes. These include Usher syndrome, neurological disorders, cystic kidney diseases, and the complex Bardet-Biedl syndrome – the latter being the specific interest of May-Simera.

At Mainz University, Professor Uwe Wolfrum, May-Simera’s scientific host, has been conducting extensive research into cilia and ciliopathies for the past several years. "We are very pleased that Dr. Helen May-Simera will be continuing her research here in Mainz and I am convinced that her work will represent an exceptionally valuable contribution to our ongoing and planned research projects and that there will be mutual benefits," said the cell biologist.

The research focus on the molecular biology of cilia and ciliopathies is promoted within Wolfrum’s work group by projects such as those of the European 7th Framework Program for Research and Technological Development and the German Research Foundation, in various foundation projects, and a European E-Rare Joint Project. In addition, the transnational work in Mainz is also integrated within the Research Unit Translational Neurosciences. Additional research projects are currently under evaluation.

Further information:
Professor Dr. Uwe Wolfrum
Cell and Matrix Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25148
fax +49 6131 39-23815
e-mail: wolfrum@uni-mainz.de
http://www.ag-wolfrum.bio.uni-mainz.de/

Weitere Informationen:

http://www.humboldt-foundation.de/web/press-release-2014-21.html 

http://www.humboldt-foundation.de/web/dossier-kovalevskaja-award.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Foundation Humboldt JGU Zoology ciliopathies disorders highly processing

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>