Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winner of Sofja Kovalevskaja Award to take up research at Mainz University

08.09.2014

Helen May-Simera wins prestigious research award from the Humboldt Foundation for her research work on cilia and related disorders

Biologist Dr. Helen May-Simera is the recipient of a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation. She will use this to set up a junior research group at Johannes Gutenberg University Mainz (JGU) that will investigate the causes of eye disorders that are associated with cilia dysfunction.


Sofja Kovalevskaja Award winner Dr. Helen May-Simera

photo: private

Prior to receiving the award, May-Simera was working at the National Eye Institute (NEI), an institute at the American National Institutes of Health (NIH). In Mainz, she will be heading up her own research group of young scientists in the Institute for Zoology, thus further enhancing the focus set on the molecular biology of cilia and the related disorders.

At Mainz University, May-Simera will also have access to the existing expertise and the national and European networks maintained by the Mainz researchers. Over the next five years, the junior researcher will receive prize money totaling EUR 1.65 million designed to finance her research project.

The Sofja Kovalevskaja Award is financed by the Federal Ministry of Education and Research (BMBF) and is awarded by the Alexander von Humboldt Foundation. It is one of the most highly endowed German academic prizes and is used to promote the work of outstanding junior researchers under unique conditions.

For five years they can undertake their own research project and form a working group at an institution of their choice in Germany – independently and without administrative constraints. The award is used to honor the outstanding academic achievements of exceptionally promising young scholars from abroad. This year, a total of eleven young academics received the award, the ceremony for which will take place in Berlin on November 11, 2014.

The application submitted by Helen May-Simera to the Humboldt Foundation covers a research project in which she intends to investigate signal processing in the retinal pigment epithelium, a layer of the retina. The main aim is to discover the extent to which cilia play a role in the transmission of signals. Primary cilia first became the focus of research in the early 1990s once their versatile functions had been identified.

Cilia are small organelles that project out from the cell surface and act like antennae; they receive signals from the environment, process them, and pass them on into the interior of the cell. Primary cilia dysfunction can have serious consequences for health resulting in so-called ciliopathy syndromes. These include Usher syndrome, neurological disorders, cystic kidney diseases, and the complex Bardet-Biedl syndrome – the latter being the specific interest of May-Simera.

At Mainz University, Professor Uwe Wolfrum, May-Simera’s scientific host, has been conducting extensive research into cilia and ciliopathies for the past several years. "We are very pleased that Dr. Helen May-Simera will be continuing her research here in Mainz and I am convinced that her work will represent an exceptionally valuable contribution to our ongoing and planned research projects and that there will be mutual benefits," said the cell biologist.

The research focus on the molecular biology of cilia and ciliopathies is promoted within Wolfrum’s work group by projects such as those of the European 7th Framework Program for Research and Technological Development and the German Research Foundation, in various foundation projects, and a European E-Rare Joint Project. In addition, the transnational work in Mainz is also integrated within the Research Unit Translational Neurosciences. Additional research projects are currently under evaluation.

Further information:
Professor Dr. Uwe Wolfrum
Cell and Matrix Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25148
fax +49 6131 39-23815
e-mail: wolfrum@uni-mainz.de
http://www.ag-wolfrum.bio.uni-mainz.de/

Weitere Informationen:

http://www.humboldt-foundation.de/web/press-release-2014-21.html 

http://www.humboldt-foundation.de/web/dossier-kovalevskaja-award.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Foundation Humboldt JGU Zoology ciliopathies disorders highly processing

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>