Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winner of Sofja Kovalevskaja Award to take up research at Mainz University

08.09.2014

Helen May-Simera wins prestigious research award from the Humboldt Foundation for her research work on cilia and related disorders

Biologist Dr. Helen May-Simera is the recipient of a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation. She will use this to set up a junior research group at Johannes Gutenberg University Mainz (JGU) that will investigate the causes of eye disorders that are associated with cilia dysfunction.


Sofja Kovalevskaja Award winner Dr. Helen May-Simera

photo: private

Prior to receiving the award, May-Simera was working at the National Eye Institute (NEI), an institute at the American National Institutes of Health (NIH). In Mainz, she will be heading up her own research group of young scientists in the Institute for Zoology, thus further enhancing the focus set on the molecular biology of cilia and the related disorders.

At Mainz University, May-Simera will also have access to the existing expertise and the national and European networks maintained by the Mainz researchers. Over the next five years, the junior researcher will receive prize money totaling EUR 1.65 million designed to finance her research project.

The Sofja Kovalevskaja Award is financed by the Federal Ministry of Education and Research (BMBF) and is awarded by the Alexander von Humboldt Foundation. It is one of the most highly endowed German academic prizes and is used to promote the work of outstanding junior researchers under unique conditions.

For five years they can undertake their own research project and form a working group at an institution of their choice in Germany – independently and without administrative constraints. The award is used to honor the outstanding academic achievements of exceptionally promising young scholars from abroad. This year, a total of eleven young academics received the award, the ceremony for which will take place in Berlin on November 11, 2014.

The application submitted by Helen May-Simera to the Humboldt Foundation covers a research project in which she intends to investigate signal processing in the retinal pigment epithelium, a layer of the retina. The main aim is to discover the extent to which cilia play a role in the transmission of signals. Primary cilia first became the focus of research in the early 1990s once their versatile functions had been identified.

Cilia are small organelles that project out from the cell surface and act like antennae; they receive signals from the environment, process them, and pass them on into the interior of the cell. Primary cilia dysfunction can have serious consequences for health resulting in so-called ciliopathy syndromes. These include Usher syndrome, neurological disorders, cystic kidney diseases, and the complex Bardet-Biedl syndrome – the latter being the specific interest of May-Simera.

At Mainz University, Professor Uwe Wolfrum, May-Simera’s scientific host, has been conducting extensive research into cilia and ciliopathies for the past several years. "We are very pleased that Dr. Helen May-Simera will be continuing her research here in Mainz and I am convinced that her work will represent an exceptionally valuable contribution to our ongoing and planned research projects and that there will be mutual benefits," said the cell biologist.

The research focus on the molecular biology of cilia and ciliopathies is promoted within Wolfrum’s work group by projects such as those of the European 7th Framework Program for Research and Technological Development and the German Research Foundation, in various foundation projects, and a European E-Rare Joint Project. In addition, the transnational work in Mainz is also integrated within the Research Unit Translational Neurosciences. Additional research projects are currently under evaluation.

Further information:
Professor Dr. Uwe Wolfrum
Cell and Matrix Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25148
fax +49 6131 39-23815
e-mail: wolfrum@uni-mainz.de
http://www.ag-wolfrum.bio.uni-mainz.de/

Weitere Informationen:

http://www.humboldt-foundation.de/web/press-release-2014-21.html 

http://www.humboldt-foundation.de/web/dossier-kovalevskaja-award.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Foundation Humboldt JGU Zoology ciliopathies disorders highly processing

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>