Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winner of Sofja Kovalevskaja Award to take up research at Mainz University

08.09.2014

Helen May-Simera wins prestigious research award from the Humboldt Foundation for her research work on cilia and related disorders

Biologist Dr. Helen May-Simera is the recipient of a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation. She will use this to set up a junior research group at Johannes Gutenberg University Mainz (JGU) that will investigate the causes of eye disorders that are associated with cilia dysfunction.


Sofja Kovalevskaja Award winner Dr. Helen May-Simera

photo: private

Prior to receiving the award, May-Simera was working at the National Eye Institute (NEI), an institute at the American National Institutes of Health (NIH). In Mainz, she will be heading up her own research group of young scientists in the Institute for Zoology, thus further enhancing the focus set on the molecular biology of cilia and the related disorders.

At Mainz University, May-Simera will also have access to the existing expertise and the national and European networks maintained by the Mainz researchers. Over the next five years, the junior researcher will receive prize money totaling EUR 1.65 million designed to finance her research project.

The Sofja Kovalevskaja Award is financed by the Federal Ministry of Education and Research (BMBF) and is awarded by the Alexander von Humboldt Foundation. It is one of the most highly endowed German academic prizes and is used to promote the work of outstanding junior researchers under unique conditions.

For five years they can undertake their own research project and form a working group at an institution of their choice in Germany – independently and without administrative constraints. The award is used to honor the outstanding academic achievements of exceptionally promising young scholars from abroad. This year, a total of eleven young academics received the award, the ceremony for which will take place in Berlin on November 11, 2014.

The application submitted by Helen May-Simera to the Humboldt Foundation covers a research project in which she intends to investigate signal processing in the retinal pigment epithelium, a layer of the retina. The main aim is to discover the extent to which cilia play a role in the transmission of signals. Primary cilia first became the focus of research in the early 1990s once their versatile functions had been identified.

Cilia are small organelles that project out from the cell surface and act like antennae; they receive signals from the environment, process them, and pass them on into the interior of the cell. Primary cilia dysfunction can have serious consequences for health resulting in so-called ciliopathy syndromes. These include Usher syndrome, neurological disorders, cystic kidney diseases, and the complex Bardet-Biedl syndrome – the latter being the specific interest of May-Simera.

At Mainz University, Professor Uwe Wolfrum, May-Simera’s scientific host, has been conducting extensive research into cilia and ciliopathies for the past several years. "We are very pleased that Dr. Helen May-Simera will be continuing her research here in Mainz and I am convinced that her work will represent an exceptionally valuable contribution to our ongoing and planned research projects and that there will be mutual benefits," said the cell biologist.

The research focus on the molecular biology of cilia and ciliopathies is promoted within Wolfrum’s work group by projects such as those of the European 7th Framework Program for Research and Technological Development and the German Research Foundation, in various foundation projects, and a European E-Rare Joint Project. In addition, the transnational work in Mainz is also integrated within the Research Unit Translational Neurosciences. Additional research projects are currently under evaluation.

Further information:
Professor Dr. Uwe Wolfrum
Cell and Matrix Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25148
fax +49 6131 39-23815
e-mail: wolfrum@uni-mainz.de
http://www.ag-wolfrum.bio.uni-mainz.de/

Weitere Informationen:

http://www.humboldt-foundation.de/web/press-release-2014-21.html 

http://www.humboldt-foundation.de/web/dossier-kovalevskaja-award.html

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Foundation Humboldt JGU Zoology ciliopathies disorders highly processing

More articles from Awards Funding:

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>