Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Tennessee's Vehicle Arrives for EcoCAR 2 Competition

A group of University of Tennessee, Knoxville, engineering students feel like sixteen-year olds when they received the keys to a 2013 Chevrolet Malibu they are going to remodel to make more eco-friendly.

The graduate and undergraduate students are part of a team competing in EcoCAR 2: Plugging In to the Future, a three-year collegiate engineering competition established by the U.S. Department of Energy and General Motors. They've spent the past year planning their design with the goal of making the GM-donated car a better, more efficient hybrid vehicle than what is currently on the roadways. Now, they get to see their hard work pay off as they begin to implement their design into the car.

The EcoCAR 2 competition challenges the next generation of automotive engineers to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising performance, safety and consumer acceptability. UT is one of 15 universities in North America participating in the challenge.

A year into the competition, the students have used math-based tools to model and design their own unique architecture for a plug-in hybrid electric vehicle. They'll select the system's powertrain components the same way major automakers do.

"The real-world experience these students are receiving is invaluable," said David Irick, co-adviser and research professor in the College of Engineering's Department of Mechanical, Aerospace and Biomedical Engineering. "They will actually get to see something they've developed in practice. But what is more is that we are training our future engineers to create products that take into account the environmental impact."

The arrival of the Malibu marks the official entry into Phase II of the competition where the design is applied to the car. The design, called series-parallel plug-in hybrid electric vehicle architecture, will improve the vehicle's environmental impact and efficiency in three ways.

First, the vehicle will be able to couple and de-couple the engine from the wheels while still providing electric power from the battery and/or generator to drive an electric motor. Second, the vehicle will have a large, high-voltage battery pack which allows the vehicle to run on electric power. If the battery—which can be charged using a standard wall outlet—gets depleted, the vehicle will use a combination of an engine and electric motor. Third, the vehicle will utilize E85 fuel which is a blend of 85 percent ethanol and 15 percent gasoline and burns cleaner.

"The technology in these advanced vehicles is allowing us to use multiple sources of energy within the vehicle, which, in the end, allows us to use less fuel more efficiently on an average commute," said Mitchel Routh, controls team lead and a graduate student in mechanical engineering.

While translating their design into reality, the team is also developing a working vehicle that meets the competition's goals. The competition culminates at the end of each academic year when all of the schools and their vehicles come together to compete in more than a dozen static and dynamic events. UT won sixth place in Phase I's competition. Winners receive cash awards. Since 1989, UT has had more than 500 students participate in similar projects.

GM provides production vehicles, vehicle components, seed money, technical mentoring and operational support to EcoCAR 2. The DOE and its research and development facility, Argonne National Laboratory, provide competition management, team evaluation and technical and logistical support. In total the 15 teams have been given $745 million. UT's team has received additional support of $50,000 from Denso North America Foundation.

For more information on the student engineering program, the participating schools, or the competition sponsors, please visit or

Whitney Heins | Newswise Science News
Further information:

More articles from Awards Funding:

nachricht Professor Ignacio Cirac receives Hamburg Prize for Theoretical Physics
23.09.2015 | Max-Planck-Institut für Quantenoptik

nachricht Looking into the retina—Philipp Berens receives Bernstein Award 2015
15.09.2015 | Nationales Bernstein Netzwerk Computational Neuroscience

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

07.10.2015 | Life Sciences

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015 | Machine Engineering

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

More VideoLinks >>>