Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee's Vehicle Arrives for EcoCAR 2 Competition

09.08.2012
A group of University of Tennessee, Knoxville, engineering students feel like sixteen-year olds when they received the keys to a 2013 Chevrolet Malibu they are going to remodel to make more eco-friendly.

The graduate and undergraduate students are part of a team competing in EcoCAR 2: Plugging In to the Future, a three-year collegiate engineering competition established by the U.S. Department of Energy and General Motors. They've spent the past year planning their design with the goal of making the GM-donated car a better, more efficient hybrid vehicle than what is currently on the roadways. Now, they get to see their hard work pay off as they begin to implement their design into the car.

The EcoCAR 2 competition challenges the next generation of automotive engineers to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising performance, safety and consumer acceptability. UT is one of 15 universities in North America participating in the challenge.

A year into the competition, the students have used math-based tools to model and design their own unique architecture for a plug-in hybrid electric vehicle. They'll select the system's powertrain components the same way major automakers do.

"The real-world experience these students are receiving is invaluable," said David Irick, co-adviser and research professor in the College of Engineering's Department of Mechanical, Aerospace and Biomedical Engineering. "They will actually get to see something they've developed in practice. But what is more is that we are training our future engineers to create products that take into account the environmental impact."

The arrival of the Malibu marks the official entry into Phase II of the competition where the design is applied to the car. The design, called series-parallel plug-in hybrid electric vehicle architecture, will improve the vehicle's environmental impact and efficiency in three ways.

First, the vehicle will be able to couple and de-couple the engine from the wheels while still providing electric power from the battery and/or generator to drive an electric motor. Second, the vehicle will have a large, high-voltage battery pack which allows the vehicle to run on electric power. If the battery—which can be charged using a standard wall outlet—gets depleted, the vehicle will use a combination of an engine and electric motor. Third, the vehicle will utilize E85 fuel which is a blend of 85 percent ethanol and 15 percent gasoline and burns cleaner.

"The technology in these advanced vehicles is allowing us to use multiple sources of energy within the vehicle, which, in the end, allows us to use less fuel more efficiently on an average commute," said Mitchel Routh, controls team lead and a graduate student in mechanical engineering.

While translating their design into reality, the team is also developing a working vehicle that meets the competition's goals. The competition culminates at the end of each academic year when all of the schools and their vehicles come together to compete in more than a dozen static and dynamic events. UT won sixth place in Phase I's competition. Winners receive cash awards. Since 1989, UT has had more than 500 students participate in similar projects.

GM provides production vehicles, vehicle components, seed money, technical mentoring and operational support to EcoCAR 2. The DOE and its research and development facility, Argonne National Laboratory, provide competition management, team evaluation and technical and logistical support. In total the 15 teams have been given $745 million. UT's team has received additional support of $50,000 from Denso North America Foundation.

For more information on the student engineering program, the participating schools, or the competition sponsors, please visit www.ecocarchallenge.org or www.greengarageblog.org.

Whitney Heins | Newswise Science News
Further information:
http://www.ecocarchallenge.org
http://www.greengarageblog.org

More articles from Awards Funding:

nachricht European Research Council awards Leipzig biologist a EUR 1.5 million grant
29.01.2016 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht ERC Grant for new Therapy against Burn Scars
26.01.2016 | Universität Bremen

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>