Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Tennessee's Vehicle Arrives for EcoCAR 2 Competition

09.08.2012
A group of University of Tennessee, Knoxville, engineering students feel like sixteen-year olds when they received the keys to a 2013 Chevrolet Malibu they are going to remodel to make more eco-friendly.

The graduate and undergraduate students are part of a team competing in EcoCAR 2: Plugging In to the Future, a three-year collegiate engineering competition established by the U.S. Department of Energy and General Motors. They've spent the past year planning their design with the goal of making the GM-donated car a better, more efficient hybrid vehicle than what is currently on the roadways. Now, they get to see their hard work pay off as they begin to implement their design into the car.

The EcoCAR 2 competition challenges the next generation of automotive engineers to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising performance, safety and consumer acceptability. UT is one of 15 universities in North America participating in the challenge.

A year into the competition, the students have used math-based tools to model and design their own unique architecture for a plug-in hybrid electric vehicle. They'll select the system's powertrain components the same way major automakers do.

"The real-world experience these students are receiving is invaluable," said David Irick, co-adviser and research professor in the College of Engineering's Department of Mechanical, Aerospace and Biomedical Engineering. "They will actually get to see something they've developed in practice. But what is more is that we are training our future engineers to create products that take into account the environmental impact."

The arrival of the Malibu marks the official entry into Phase II of the competition where the design is applied to the car. The design, called series-parallel plug-in hybrid electric vehicle architecture, will improve the vehicle's environmental impact and efficiency in three ways.

First, the vehicle will be able to couple and de-couple the engine from the wheels while still providing electric power from the battery and/or generator to drive an electric motor. Second, the vehicle will have a large, high-voltage battery pack which allows the vehicle to run on electric power. If the battery—which can be charged using a standard wall outlet—gets depleted, the vehicle will use a combination of an engine and electric motor. Third, the vehicle will utilize E85 fuel which is a blend of 85 percent ethanol and 15 percent gasoline and burns cleaner.

"The technology in these advanced vehicles is allowing us to use multiple sources of energy within the vehicle, which, in the end, allows us to use less fuel more efficiently on an average commute," said Mitchel Routh, controls team lead and a graduate student in mechanical engineering.

While translating their design into reality, the team is also developing a working vehicle that meets the competition's goals. The competition culminates at the end of each academic year when all of the schools and their vehicles come together to compete in more than a dozen static and dynamic events. UT won sixth place in Phase I's competition. Winners receive cash awards. Since 1989, UT has had more than 500 students participate in similar projects.

GM provides production vehicles, vehicle components, seed money, technical mentoring and operational support to EcoCAR 2. The DOE and its research and development facility, Argonne National Laboratory, provide competition management, team evaluation and technical and logistical support. In total the 15 teams have been given $745 million. UT's team has received additional support of $50,000 from Denso North America Foundation.

For more information on the student engineering program, the participating schools, or the competition sponsors, please visit www.ecocarchallenge.org or www.greengarageblog.org.

Whitney Heins | Newswise Science News
Further information:
http://www.ecocarchallenge.org
http://www.greengarageblog.org

More articles from Awards Funding:

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht IVAM Marketing Prize recognizes convincing technology marketing for the tenth time
22.08.2017 | IVAM Fachverband für Mikrotechnik

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>