Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arkansas Professor Wins Award From National Science Foundation

07.06.2011
When it comes to rocks and minerals that are millions of years old, University of Arkansas geologist Fangzhen Teng uses a brand new approach to solve the mysteries around their cooling histories. His new approach has earned him a CAREER Award for $458,928 over five years from the National Science Foundation.

Using his knowledge and passion for isotopes, Teng strives to solve some of the mysteries of the formation and evolution of the planet.

One tool he uses is the fractionation of magnesium, which he proposes can be used as three things: “thermometer, speedometer, and as a tracer of crust-mantle interactions.” As magma cools, the isotopes separate based on the differences in atomic mass. The lighter isotopes will form bonds first and crystallize into rocks before the heavier isotopes will. Looking at the ratios of heavy to light isotopes in a given rock allows scientists to determine the temperature at which the rock crystallized.

“Geothermometry” as it is called, has been used for many years in low-temperature processes, such as the formation of carbonates. However, until recently, it was believed that at high temperatures the isotopes mixed together uniformly. The work by Teng and his colleagues proves that isotopes do fractionate at high temperatures.

“In 2008 we had a paper published in Science; we had a huge fractionation of iron. At that time people believed that at high temperature everything was homogenous,” Teng said. “This year we have three papers being published; all of them report large fractionation for magnesium isotopes at high temperatures, so I am pretty sure now people believe that isotopes are fractionated at high temperatures for magnesium.”

Improved technology in recent years allows the instruments that measure the isotopic ratios to reduce the errors, making the high-temperature fractionation measurable.

“We can use magnesium isotopes to calculate how long the crystals have grown from the magma,” he said. With the Hawaii basalts, we can track how long they take to cool because we know when they erupted, but for other rocks we do not have that information. Magnesium isotope fractionation helps scientists determine that property.

Using the isotopic signature as a tracer can allow scientists to determine where in the Earth a rock originated, providing more information about how the planet cooled and the other mechanisms that operate deep below the crust we live on.

The principles can apply not just to our own planet. In theory, magnesium isotope fractionation can be used to determine the age of asteroids and rocks from the Moon as well as other planets.

“By using magnesium isotopes we can know how the Moon formed,” Teng said. “Magnesium isotope fractionation, we believe, can be used to study a lot of processes, but we still know very little about it, which is why we need to study it more.”

The NSF award allows Teng to support one doctoral student for five years, one master’s student for two years, as well as undergraduate students working in the lab. Having students working in the lab is one of the best ways for them to learn how science is accomplished and enables Teng to share his knowledge with the future of the profession.

The award also allows him to focus on groundbreaking research instead of worrying about funding during the five-year duration of the award. Instead, he can focus his time on the research, writing papers about the work accomplished, working with students, and developing this new approach to solve the mysteries of the Earth and solar system.

The NSF Faculty Early Career Development Program aims to encourage and aid in the growth of young professors who have shown exceptional potential in both research and educational settings. By rewarding deserving professors, the National Science Foundation hopes that the faculty members will continue to perform exceptional research and use their knowledge and research to elevate their teaching and educational abilities and effectiveness.

Teng has been a faculty member with the geosciences department in the J. William Fulbright College of Arts and Sciences since 2008. He is also a faculty member of the Arkansas Center for Space and Planetary Sciences.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
Arkansas Center for Space and Planetary Sciences
479-575-4524, fteng@uark.edu
William T Bryan, intern
Office of University Relations
479-575-5555, wxb004@uark.edu

Fangzhen Teng | Newswise Science News
Further information:
http://www.uark.edu

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>