Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arkansas Professor Wins Award From National Science Foundation

07.06.2011
When it comes to rocks and minerals that are millions of years old, University of Arkansas geologist Fangzhen Teng uses a brand new approach to solve the mysteries around their cooling histories. His new approach has earned him a CAREER Award for $458,928 over five years from the National Science Foundation.

Using his knowledge and passion for isotopes, Teng strives to solve some of the mysteries of the formation and evolution of the planet.

One tool he uses is the fractionation of magnesium, which he proposes can be used as three things: “thermometer, speedometer, and as a tracer of crust-mantle interactions.” As magma cools, the isotopes separate based on the differences in atomic mass. The lighter isotopes will form bonds first and crystallize into rocks before the heavier isotopes will. Looking at the ratios of heavy to light isotopes in a given rock allows scientists to determine the temperature at which the rock crystallized.

“Geothermometry” as it is called, has been used for many years in low-temperature processes, such as the formation of carbonates. However, until recently, it was believed that at high temperatures the isotopes mixed together uniformly. The work by Teng and his colleagues proves that isotopes do fractionate at high temperatures.

“In 2008 we had a paper published in Science; we had a huge fractionation of iron. At that time people believed that at high temperature everything was homogenous,” Teng said. “This year we have three papers being published; all of them report large fractionation for magnesium isotopes at high temperatures, so I am pretty sure now people believe that isotopes are fractionated at high temperatures for magnesium.”

Improved technology in recent years allows the instruments that measure the isotopic ratios to reduce the errors, making the high-temperature fractionation measurable.

“We can use magnesium isotopes to calculate how long the crystals have grown from the magma,” he said. With the Hawaii basalts, we can track how long they take to cool because we know when they erupted, but for other rocks we do not have that information. Magnesium isotope fractionation helps scientists determine that property.

Using the isotopic signature as a tracer can allow scientists to determine where in the Earth a rock originated, providing more information about how the planet cooled and the other mechanisms that operate deep below the crust we live on.

The principles can apply not just to our own planet. In theory, magnesium isotope fractionation can be used to determine the age of asteroids and rocks from the Moon as well as other planets.

“By using magnesium isotopes we can know how the Moon formed,” Teng said. “Magnesium isotope fractionation, we believe, can be used to study a lot of processes, but we still know very little about it, which is why we need to study it more.”

The NSF award allows Teng to support one doctoral student for five years, one master’s student for two years, as well as undergraduate students working in the lab. Having students working in the lab is one of the best ways for them to learn how science is accomplished and enables Teng to share his knowledge with the future of the profession.

The award also allows him to focus on groundbreaking research instead of worrying about funding during the five-year duration of the award. Instead, he can focus his time on the research, writing papers about the work accomplished, working with students, and developing this new approach to solve the mysteries of the Earth and solar system.

The NSF Faculty Early Career Development Program aims to encourage and aid in the growth of young professors who have shown exceptional potential in both research and educational settings. By rewarding deserving professors, the National Science Foundation hopes that the faculty members will continue to perform exceptional research and use their knowledge and research to elevate their teaching and educational abilities and effectiveness.

Teng has been a faculty member with the geosciences department in the J. William Fulbright College of Arts and Sciences since 2008. He is also a faculty member of the Arkansas Center for Space and Planetary Sciences.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
Arkansas Center for Space and Planetary Sciences
479-575-4524, fteng@uark.edu
William T Bryan, intern
Office of University Relations
479-575-5555, wxb004@uark.edu

Fangzhen Teng | Newswise Science News
Further information:
http://www.uark.edu

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>