Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Arkansas Professor Wins Award From National Science Foundation

07.06.2011
When it comes to rocks and minerals that are millions of years old, University of Arkansas geologist Fangzhen Teng uses a brand new approach to solve the mysteries around their cooling histories. His new approach has earned him a CAREER Award for $458,928 over five years from the National Science Foundation.

Using his knowledge and passion for isotopes, Teng strives to solve some of the mysteries of the formation and evolution of the planet.

One tool he uses is the fractionation of magnesium, which he proposes can be used as three things: “thermometer, speedometer, and as a tracer of crust-mantle interactions.” As magma cools, the isotopes separate based on the differences in atomic mass. The lighter isotopes will form bonds first and crystallize into rocks before the heavier isotopes will. Looking at the ratios of heavy to light isotopes in a given rock allows scientists to determine the temperature at which the rock crystallized.

“Geothermometry” as it is called, has been used for many years in low-temperature processes, such as the formation of carbonates. However, until recently, it was believed that at high temperatures the isotopes mixed together uniformly. The work by Teng and his colleagues proves that isotopes do fractionate at high temperatures.

“In 2008 we had a paper published in Science; we had a huge fractionation of iron. At that time people believed that at high temperature everything was homogenous,” Teng said. “This year we have three papers being published; all of them report large fractionation for magnesium isotopes at high temperatures, so I am pretty sure now people believe that isotopes are fractionated at high temperatures for magnesium.”

Improved technology in recent years allows the instruments that measure the isotopic ratios to reduce the errors, making the high-temperature fractionation measurable.

“We can use magnesium isotopes to calculate how long the crystals have grown from the magma,” he said. With the Hawaii basalts, we can track how long they take to cool because we know when they erupted, but for other rocks we do not have that information. Magnesium isotope fractionation helps scientists determine that property.

Using the isotopic signature as a tracer can allow scientists to determine where in the Earth a rock originated, providing more information about how the planet cooled and the other mechanisms that operate deep below the crust we live on.

The principles can apply not just to our own planet. In theory, magnesium isotope fractionation can be used to determine the age of asteroids and rocks from the Moon as well as other planets.

“By using magnesium isotopes we can know how the Moon formed,” Teng said. “Magnesium isotope fractionation, we believe, can be used to study a lot of processes, but we still know very little about it, which is why we need to study it more.”

The NSF award allows Teng to support one doctoral student for five years, one master’s student for two years, as well as undergraduate students working in the lab. Having students working in the lab is one of the best ways for them to learn how science is accomplished and enables Teng to share his knowledge with the future of the profession.

The award also allows him to focus on groundbreaking research instead of worrying about funding during the five-year duration of the award. Instead, he can focus his time on the research, writing papers about the work accomplished, working with students, and developing this new approach to solve the mysteries of the Earth and solar system.

The NSF Faculty Early Career Development Program aims to encourage and aid in the growth of young professors who have shown exceptional potential in both research and educational settings. By rewarding deserving professors, the National Science Foundation hopes that the faculty members will continue to perform exceptional research and use their knowledge and research to elevate their teaching and educational abilities and effectiveness.

Teng has been a faculty member with the geosciences department in the J. William Fulbright College of Arts and Sciences since 2008. He is also a faculty member of the Arkansas Center for Space and Planetary Sciences.

CONTACTS:
Fangzhen Teng, assistant professor, geosciences
J. William Fulbright College of Arts and Sciences
Arkansas Center for Space and Planetary Sciences
479-575-4524, fteng@uark.edu
William T Bryan, intern
Office of University Relations
479-575-5555, wxb004@uark.edu

Fangzhen Teng | Newswise Science News
Further information:
http://www.uark.edu

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>