Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking neuronal wiring - Hermann Cuntz receives Bernstein Award 2013

25.09.2013
Hermann Cuntz is awarded one of the most attractive junior research prizes for his investigations on the structure of neuronal connections.

The Bernstein Award for Computational Neuroscience 2013 is awarded to the Frankfurt scientist Hermann Cuntz for his research on the principles of neural connections. The prize will be awarded by Dr. Christiane Buchholz, Federal Ministry of Education and Research (BMBF), on 25 September 2013 at 15:50 h. The ceremony will be held within the Bernstein Conference on Computational Neuroscience in Tübingen.


These natural looking nerve cells have been generated on the computer by Hermann Cuntz, using the method of „morphological modeling“.

Image: Hermann Cuntz, 2011

With up to 1.25 million euros, the Bernstein Award is a very competitive junior research prize. It enables outstanding young investigators to establish their own research group at a German research institution. This year's winner Hermann Cuntz plans to build up his lab at the Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society and the Frankfurt Institute for Advanced Studies (FIAS), and will hereby extend the Bernstein Focus: Neurotechnology in Frankfurt.

According to which principles do nerve cells wire together to form small networks in the brain? Is there a basic connection code? In his research, Hermann Cuntz investigates the effects of shape and morphology of nerve cells on the structure and function of neuronal circuits. His tools are theoretical models. With their help, he generates synthetic neurons in the computer and calculates how these cells – starting from their shape – perfectly combine to small networks. In a second approach, he looks at the impact of the circuit´s structure on its own activity and dynamics. In this way, he is able to decipher the relationship between structure and function of neural connections. "For me, the neuronal morphology, meaning the shape of nerve cells, is the starting point to derive general rules about neural connections and functions," the neuroscientist says.

Cuntz previous works have laid the foundations for his theoretical analyses. He has developed a method called "morphological modeling". This method allows him to create nerve cells of diverse shapes – or morphology – in the computer by taking into account certain factors. In the underlying formula, different characteristics are included, such as the number of contact points with neighboring neurons, or the use of shortest feasible paths and as little nerve cell material as possible.

"The latter two criteria were already postulated by the Spanish anatomist Ramón y Cajal in the early 19th Century," Cuntz says. "Nowadays, I use it to form anatomically realistic models of neurons and neuronal networks." His synthetic neurons are so lifelike that even neuroanatomists cannot distinguish the artificially generated cells from natural ones. By now, scientists worldwide use the computer software developed by Cuntz for his modeling method to replicate the brain’s structure in major endeavours like the Human Brain Project.

Hermann Cuntz will pursue his questions about the brain’s wiring principles in Frankfurt in cooperation with local scientists at the ESI, the FIAS, and the Goethe University Frankfurt. In this way, he will strengthen the existing Bernstein Focus: Neurotechnology in Frankfurt. In particular, he plans to strengthen his ties with experimental researchers with the aim to further testing and advancing the reliability of his network models and their predictions.

Hermann Cuntz studied biology at the University of Tübingen and wrote his diploma thesis under the supervision of Alexander Borst at the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen. Afterwards, he followed Borst to the University of California at Berkeley (USA), and later to the Max Planck Institute of Neurobiology in Munich, where he received his PhD in 2004. After a two-year postdoctoral stay with Idan Segev at the Hebrew University in Jerusalem, he worked in the laboratory of Michael Häusser at University College London. Since 2011 he is a visiting scientist in the lab of Pascal Fries at the ESI, and his laboratory is located at the Institute for Clinical Neuroanatomy, Goethe University.

The Bernstein Award has been conferred for the 8th time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Dr. Hermann Cuntz
Ernst Strüngmann Institute (ESI)
for Neuroscience in Cooperation
with Max Planck Society
Institute of Clinical Neuroanatomy
Goethe University
Theodor-Stern-Kai 7
Building 27
60590 Frankfurt/Main
Tel: (+49)-069-6301-87127
Email: hermann.neuro@gmail.com

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>