Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking neuronal wiring - Hermann Cuntz receives Bernstein Award 2013

25.09.2013
Hermann Cuntz is awarded one of the most attractive junior research prizes for his investigations on the structure of neuronal connections.

The Bernstein Award for Computational Neuroscience 2013 is awarded to the Frankfurt scientist Hermann Cuntz for his research on the principles of neural connections. The prize will be awarded by Dr. Christiane Buchholz, Federal Ministry of Education and Research (BMBF), on 25 September 2013 at 15:50 h. The ceremony will be held within the Bernstein Conference on Computational Neuroscience in Tübingen.


These natural looking nerve cells have been generated on the computer by Hermann Cuntz, using the method of „morphological modeling“.

Image: Hermann Cuntz, 2011

With up to 1.25 million euros, the Bernstein Award is a very competitive junior research prize. It enables outstanding young investigators to establish their own research group at a German research institution. This year's winner Hermann Cuntz plans to build up his lab at the Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society and the Frankfurt Institute for Advanced Studies (FIAS), and will hereby extend the Bernstein Focus: Neurotechnology in Frankfurt.

According to which principles do nerve cells wire together to form small networks in the brain? Is there a basic connection code? In his research, Hermann Cuntz investigates the effects of shape and morphology of nerve cells on the structure and function of neuronal circuits. His tools are theoretical models. With their help, he generates synthetic neurons in the computer and calculates how these cells – starting from their shape – perfectly combine to small networks. In a second approach, he looks at the impact of the circuit´s structure on its own activity and dynamics. In this way, he is able to decipher the relationship between structure and function of neural connections. "For me, the neuronal morphology, meaning the shape of nerve cells, is the starting point to derive general rules about neural connections and functions," the neuroscientist says.

Cuntz previous works have laid the foundations for his theoretical analyses. He has developed a method called "morphological modeling". This method allows him to create nerve cells of diverse shapes – or morphology – in the computer by taking into account certain factors. In the underlying formula, different characteristics are included, such as the number of contact points with neighboring neurons, or the use of shortest feasible paths and as little nerve cell material as possible.

"The latter two criteria were already postulated by the Spanish anatomist Ramón y Cajal in the early 19th Century," Cuntz says. "Nowadays, I use it to form anatomically realistic models of neurons and neuronal networks." His synthetic neurons are so lifelike that even neuroanatomists cannot distinguish the artificially generated cells from natural ones. By now, scientists worldwide use the computer software developed by Cuntz for his modeling method to replicate the brain’s structure in major endeavours like the Human Brain Project.

Hermann Cuntz will pursue his questions about the brain’s wiring principles in Frankfurt in cooperation with local scientists at the ESI, the FIAS, and the Goethe University Frankfurt. In this way, he will strengthen the existing Bernstein Focus: Neurotechnology in Frankfurt. In particular, he plans to strengthen his ties with experimental researchers with the aim to further testing and advancing the reliability of his network models and their predictions.

Hermann Cuntz studied biology at the University of Tübingen and wrote his diploma thesis under the supervision of Alexander Borst at the Friedrich Miescher Laboratory of the Max Planck Society in Tübingen. Afterwards, he followed Borst to the University of California at Berkeley (USA), and later to the Max Planck Institute of Neurobiology in Munich, where he received his PhD in 2004. After a two-year postdoctoral stay with Idan Segev at the Hebrew University in Jerusalem, he worked in the laboratory of Michael Häusser at University College London. Since 2011 he is a visiting scientist in the lab of Pascal Fries at the ESI, and his laboratory is located at the Institute for Clinical Neuroanatomy, Goethe University.

The Bernstein Award has been conferred for the 8th time this year and is part of the National Bernstein Network for Computational Neuroscience, a funding initiative launched by the Federal Ministry of Education and Research (BMBF) in 2004. The initiative’s aim was to sustainably establish the new and promising research discipline of Computational Neuroscience in Germany. With this support, the network meanwhile has developed into one of the largest research networks in the field of computational neuroscience worldwide. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Dr. Hermann Cuntz
Ernst Strüngmann Institute (ESI)
for Neuroscience in Cooperation
with Max Planck Society
Institute of Clinical Neuroanatomy
Goethe University
Theodor-Stern-Kai 7
Building 27
60590 Frankfurt/Main
Tel: (+49)-069-6301-87127
Email: hermann.neuro@gmail.com

Mareike Kardinal | idw
Further information:
http://www.nncn.de

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>