Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maldacena, Polchinski and Vafa Win 2008 Dirac Medal

11.08.2008
On the occasion of the birthday of P.A.M. Dirac, the Abdus Salam International Centre for Theoretical Physics (ICTP) takes pleasure in announcing that the 2008 Dirac Medal and Prize will be awarded to:

Professor J.M. Maldacena
(Institute for Advanced Study, Princeton)

Professor J. Polchinski
(KITP, UC Santa Barbara)

Professor C. Vafa
(Harvard University)

Professors Maldacena, Polchinski and Vafa are being honored for their fundamental contributions to superstring theory. Their studies range from early work on orbifold compactifications, physics and mathematics of mirror symmetry, D-branes and black hole physics, as well as gauge theory-gravity correspondence.

Their contributions in uncovering the strong-weak dualities between seemingly different string theories have enabled us to learn about regimes of quantum field theory which are not accessible to perturbative analysis. These profound achievements have helped us to address outstanding questions like confinement of quarks and QCD mass spectrum from a new perspective and have found applications in practical calculations in the fluid dynamics of quark gluon plasma.

The dualities have also led string theorists to conjecture that the five different superstring theories in ten space-time dimensions are manifestations of one underlying theory, yet undiscovered, which has been named the M-theory.

The Dirac Medal, established by the Abdus Salam International Centre for Theoretical Physics (ICTP) in 1985, is one of the world's most prestigious prizes in physics. Recipients receive a cash award and medal. They also present a lecture at the ICTP in Trieste, Italy, at an official ceremony held at a later date. Winners of the Nobel Prize, Fields Medal and Wolf Foundation Prize are not eligible for the Dirac Medal.

The announcement of the Dirac Medal is made each year on 8 August, the birth date of the great 20th century physicist Paul A.M. Dirac, who won the Nobel Prize in 1933. Dirac was a close associate and friend of ICTP from the Centre's first days in the early 1960s until his death in 1984.

For additional information about the Dirac Medal and a complete list of previous winners, see http://prizes.ictp.it/Dirac

Anna Triolo | alfa
Further information:
http://www.ictp.it
http://prizes.ictp.it/Dirac

More articles from Awards Funding:

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>