Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The “thinking” safety helmet

05.06.2008
If something hits you on the head while you are wearing this safety helmet, its soft flexible inner layer will instantly turn into a rock-hard shock-absorbent material.

Industrial designer Tore Christian Bjørsvik Storholmen at SINTEF Health Research felt that workers in the building and construction industry deserved a helmet that is smarter than current models - in more than one sense.


The helmet is lined on the inside with a material that is soft and flexible under normal conditions, but which “locks” instantaneously, becoming hard and shock-absorbent, if the helmet is subjected to impact or blows.

Now, the 27-year-old designer has won an award from the Norwegian Design Council for his “ProActive” helmet.

Talent competition award

The helmet took third prize in “Young talents – open class” at this year’s
design awards ceremony in Oslo on March 12.
More than one hundred candidates had submitted their contributions to this class, which covers designs ranging from clothing to furniture.

New shape

“As far as appearance is concerned, safety helmets have not altered much in the course of the past 30 years. The shape of my concept was inspired by the baseball cap which has long been popular headgear in the construction industry”, explains Storholmen.

He chose this design because he was well aware that workers are more likely to wear protective equipment that they feel comfortable wearing. However, the “smart” concept refers to more than the appearance of the new helmet.

Smart material

The helmet is lined on the inside with a material that is soft and flexible under normal conditions, but which “locks” instantaneously, becoming hard and shock-absorbent, if the helmet is subjected to impact or blows.

“The material on the inside makes my helmet more comfortable in everyday use, and at the same time, safer than traditional models”, says the prize-winner.

And in line with the spirit of the times, Storholmen has made parts of the outer shell transparent, so that the shock-absorbent material is visible from the outside.

Smart ear protection

SINTEF’s new employee has also used smart materials in the ear-protectors that form part of the helmet. Both the ear-protectors themselves and the “loop” that is used to charge up instruments in the helmet are made of textiles that can conduct electricity.

“This means that communication systems can be incorporated in the helmet without the need for cables that could become caught up in other things,” says Storholmen.

Radio or intercom links or gas detectors can all be mounted on the helmet according to the requirements of the individual user.

A combination of pressure-sensitive textiles and Bluetooth technology means that the user can answer a mobile phone call without having to remove his gloves, ear protectors and helmet.

Student project

Tore Christian Bjørsvik Storholmen graduated last year as M.Sc. (Eng.) from NTNU’s industrial design course. The ProActive helmet is the result of a student project that formed part of the course.

“We chose our topics ourselves. Since I have a brother in the construction industry I realised that a lot of people are uncomfortable wearing traditional safety helmets,” says the young prize-winner.

Multidisciplinary group effort

Storholmen is now with SINTEF Health Research’s Work Physiology section, where he works on SmartWear, which is one of six areas of special effort in the SINTEF Group. The aim here is to develop two types of smart clothing:

• Clothing with integrated instrumentation, i.e. with inbuilt sensors and communication equipment.

• Clothing made of functional materials, i.e. materials that give clothes new properties when the temperature changes or when there are other alterations in the user’s environment .

SmartWear is a multidisciplinary effort, in which SINTEF scientists in ICT, materials science, physiology and product design cooperate across the boundaries of their own particular disciplines.

by Svein Tønseth

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>