Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Receive $1.46 Million Grant From National Institutes of Health for Cancer Research

21.06.2010
The National Institutes of Health has awarded two Baylor University researchers a $1.46 million grant to research and test new compounds that could help fight cancerous tumors.

The grant will allow Dr. Kevin G. Pinney, professor of chemistry and biochemistry in Baylor’s College of Arts and Sciences, and Dr. Mary Lynn Trawick, an associate professor of chemistry and biochemistry, to design, create and test several new potential new cancer fighting compounds that may disrupt solid-cancer tumors and target any remaining tumor cells that may grow after the tumor is treated. The work will be done in collaboration with University of Texas Southwestern Medical Center in Dallas, who will serve as a subcontract on the grant award.

“We are one of the few programs in the world working with these particular compounds and with the collaboration with UT Southwestern, I think this research project was very attractive to NIH,” Pinney said. “This project will give us some deeper insight into these compounds that, in the future, might lead to clinical trials.”

In the first phase of the research, Pinney and Trawick will test three new compounds known as Vascular Disrupting Agents (VDA) that have shown promise in preliminary tests. An emerging area of cancer treatment still in the experimental phase, VDAs target the flow of blood to solid cancer tumors and other abnormal blood vessels while leaving healthy cells intact. The researchers will test these three compounds to see how tolerable they are in animal models and how well the compounds actually disrupt blood flow to the tumor.

The second phase will consist of designing, creating and testing a carefully selected small group of potential new cancer fighting compounds that may disrupt solid-cancer tumors. The Baylor researchers said the main point of emphasis will be on the mechanism of action of the new compounds. Pinney and his research team will be involved with the synthesis and purification of the new potential anticancer VDAs, while Trawick and her research team will evaluate the biochemistry and cell biology.

Finally, the third phase will look into the cell mechanisms of each of the new compounds. The Baylor researchers said many questions remain unanswered, to date, in regard to how VDAs actually function on a molecular level in terms of cell signaling pathways. The study will look at several of these mechanistic questions.

“We will be comparing and studying the cells and proteins to see just how potent they are to cancer which could eventually lead to new drug discovery,” Trawick said. “We are looking at selectivity – how do they disrupt cancer tumors and how well do they do it.”

The study will take about five years to complete.

For more information, contact Matt Pene, assistant director of media communications, at (254) 710-4656.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

Further reports about: Cancer VDA blood vessel cancer tumors health services healthy cell signaling pathway

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>