Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Receive $1.46 Million Grant From National Institutes of Health for Cancer Research

21.06.2010
The National Institutes of Health has awarded two Baylor University researchers a $1.46 million grant to research and test new compounds that could help fight cancerous tumors.

The grant will allow Dr. Kevin G. Pinney, professor of chemistry and biochemistry in Baylor’s College of Arts and Sciences, and Dr. Mary Lynn Trawick, an associate professor of chemistry and biochemistry, to design, create and test several new potential new cancer fighting compounds that may disrupt solid-cancer tumors and target any remaining tumor cells that may grow after the tumor is treated. The work will be done in collaboration with University of Texas Southwestern Medical Center in Dallas, who will serve as a subcontract on the grant award.

“We are one of the few programs in the world working with these particular compounds and with the collaboration with UT Southwestern, I think this research project was very attractive to NIH,” Pinney said. “This project will give us some deeper insight into these compounds that, in the future, might lead to clinical trials.”

In the first phase of the research, Pinney and Trawick will test three new compounds known as Vascular Disrupting Agents (VDA) that have shown promise in preliminary tests. An emerging area of cancer treatment still in the experimental phase, VDAs target the flow of blood to solid cancer tumors and other abnormal blood vessels while leaving healthy cells intact. The researchers will test these three compounds to see how tolerable they are in animal models and how well the compounds actually disrupt blood flow to the tumor.

The second phase will consist of designing, creating and testing a carefully selected small group of potential new cancer fighting compounds that may disrupt solid-cancer tumors. The Baylor researchers said the main point of emphasis will be on the mechanism of action of the new compounds. Pinney and his research team will be involved with the synthesis and purification of the new potential anticancer VDAs, while Trawick and her research team will evaluate the biochemistry and cell biology.

Finally, the third phase will look into the cell mechanisms of each of the new compounds. The Baylor researchers said many questions remain unanswered, to date, in regard to how VDAs actually function on a molecular level in terms of cell signaling pathways. The study will look at several of these mechanistic questions.

“We will be comparing and studying the cells and proteins to see just how potent they are to cancer which could eventually lead to new drug discovery,” Trawick said. “We are looking at selectivity – how do they disrupt cancer tumors and how well do they do it.”

The study will take about five years to complete.

For more information, contact Matt Pene, assistant director of media communications, at (254) 710-4656.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

Further reports about: Cancer VDA blood vessel cancer tumors health services healthy cell signaling pathway

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>