Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prof. Ferenc Krausz is winner of the King Faisal International Prize 2013

31.01.2013
The King Faisal International Prize for Science (Topic: Physics) for the year 2013 has been jointly awarded to Professor Ferenc Krausz, Director at the Max-Planck-Institute of Quantum Optics in Garching and Chair of Experimental Physics at the Ludwig-Maximilians-Universität (LMU) Munich, and Professor Paul B. Corkum, Research Chair in Attosecond Photonics, University of Ottawa (Canada).

Since 1978, this award has annually been given to scientists for outstanding achievements in five categories by the King Faisal Foundation in Riyadh (Saudi Arabia). Prof. Krausz and Prof. Corkum are recognized “for their independent pioneering work which has made it possible to capture the incredibly fast motion of electrons in atoms and molecules in a "movie" with a time resolution down to attoseconds.”

An attosecond is an extremely short period of time – a billionth of a billionth of a second. In 2001, Professor Ferenc Krausz’ group has been the first one to succeed in generating light pulses in the attosecond domain. Attosecond light pulses have allowed for the first time observation of the atomic-scale motion of electrons in real time. These measurements have already brought amazing new insights into atomic and solid state physics.

Besides having a strong focus on attosecond physics, Professor Krausz has developed pioneering laser techniques for generating light pulses consisting of only a few wave cycles with controlled waveforms. The perfectly controlled high-intensity fields of theses femtosecond (1fs = 10to the -15s) pulses exert forces on electrically charged elementary particles (electrons or protons) that are comparable to intra-atomic forces.

The high application potential of these laser pulses is being explored in the “Munich-Centre for Advanced Photonics”º(MAP), a research network carried by the LMU, Technische Universität München (TUM) and the MPQ, for shedding light on the mysteries of microscopic motions and developing new biomedical techniques in the new Centre for Advanced Laser Applications (CALA) which is going to be constructed on the research site Garching in the next years.

On Professor Krausz:
Born in Mór (Hungary) in 1962, Ferenc Krausz studied electrical engineering at the Budapest University of Technology and theoretical physics at the Eötvös-Loránd University in Budapest. In 1991 he received his doctoral degree in Quantum Electronics at the Vienna University of Technology, where only two years later he received his habilitation. In 1999 he was appointed full professor at the Vienna University of Technology and in 2000 he became director of the centre for “Advanced Light Sources”. In 2003 he was offered the position of director at the Max-Planck-Institute of Quantum Optics, where he leads the “Attosecond Physics” Division. In 2004, he took over a Chair of Experimental Physics at the LMU Munich.
Professor Krausz has been the recipient of numerous scientific awards and prizes, e.g. the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft in 2005. In 2006 he was presented with the Quantum Electronics Award of the IEEE Laser and Electro-Optics Society as well as with the British “Progress Medal” of the Royal Photographic Society. In 2011 he has received the “Verdienstkreuz am Bande” (order of merit) of the Federal Rebublic of Germany. Prof. Krausz is a member of many scientific societies and academies such as the Austrian and Hungarian Academy of Sciences and the European Academy of Sciences and Arts in Salzburg (Austria). In 2012 he became elected as a foreign member of the Russian Academy of Sciences and as a member of the Academia Europaea. Professor Krausz will receive the King Faisal International Prize in an official ceremony to be held in March 2013. Olivia Meyer-Streng

Contact:
Prof. Ferenc Krausz
Chair of Experimental Physics, Ludwig-Maximilians-Universität München
Laboratory for Attosecond Physics
Director at the Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 32905 -600
Fax: +49 (0)89 32905 -649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>