Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prof. Ferenc Krausz is winner of the King Faisal International Prize 2013

31.01.2013
The King Faisal International Prize for Science (Topic: Physics) for the year 2013 has been jointly awarded to Professor Ferenc Krausz, Director at the Max-Planck-Institute of Quantum Optics in Garching and Chair of Experimental Physics at the Ludwig-Maximilians-Universität (LMU) Munich, and Professor Paul B. Corkum, Research Chair in Attosecond Photonics, University of Ottawa (Canada).

Since 1978, this award has annually been given to scientists for outstanding achievements in five categories by the King Faisal Foundation in Riyadh (Saudi Arabia). Prof. Krausz and Prof. Corkum are recognized “for their independent pioneering work which has made it possible to capture the incredibly fast motion of electrons in atoms and molecules in a "movie" with a time resolution down to attoseconds.”

An attosecond is an extremely short period of time – a billionth of a billionth of a second. In 2001, Professor Ferenc Krausz’ group has been the first one to succeed in generating light pulses in the attosecond domain. Attosecond light pulses have allowed for the first time observation of the atomic-scale motion of electrons in real time. These measurements have already brought amazing new insights into atomic and solid state physics.

Besides having a strong focus on attosecond physics, Professor Krausz has developed pioneering laser techniques for generating light pulses consisting of only a few wave cycles with controlled waveforms. The perfectly controlled high-intensity fields of theses femtosecond (1fs = 10to the -15s) pulses exert forces on electrically charged elementary particles (electrons or protons) that are comparable to intra-atomic forces.

The high application potential of these laser pulses is being explored in the “Munich-Centre for Advanced Photonics”º(MAP), a research network carried by the LMU, Technische Universität München (TUM) and the MPQ, for shedding light on the mysteries of microscopic motions and developing new biomedical techniques in the new Centre for Advanced Laser Applications (CALA) which is going to be constructed on the research site Garching in the next years.

On Professor Krausz:
Born in Mór (Hungary) in 1962, Ferenc Krausz studied electrical engineering at the Budapest University of Technology and theoretical physics at the Eötvös-Loránd University in Budapest. In 1991 he received his doctoral degree in Quantum Electronics at the Vienna University of Technology, where only two years later he received his habilitation. In 1999 he was appointed full professor at the Vienna University of Technology and in 2000 he became director of the centre for “Advanced Light Sources”. In 2003 he was offered the position of director at the Max-Planck-Institute of Quantum Optics, where he leads the “Attosecond Physics” Division. In 2004, he took over a Chair of Experimental Physics at the LMU Munich.
Professor Krausz has been the recipient of numerous scientific awards and prizes, e.g. the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft in 2005. In 2006 he was presented with the Quantum Electronics Award of the IEEE Laser and Electro-Optics Society as well as with the British “Progress Medal” of the Royal Photographic Society. In 2011 he has received the “Verdienstkreuz am Bande” (order of merit) of the Federal Rebublic of Germany. Prof. Krausz is a member of many scientific societies and academies such as the Austrian and Hungarian Academy of Sciences and the European Academy of Sciences and Arts in Salzburg (Austria). In 2012 he became elected as a foreign member of the Russian Academy of Sciences and as a member of the Academia Europaea. Professor Krausz will receive the King Faisal International Prize in an official ceremony to be held in March 2013. Olivia Meyer-Streng

Contact:
Prof. Ferenc Krausz
Chair of Experimental Physics, Ludwig-Maximilians-Universität München
Laboratory for Attosecond Physics
Director at the Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 32905 -600
Fax: +49 (0)89 32905 -649
E-mail: ferenc.krausz@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>