Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicist Mathias Kläui awarded ERC Proof of Concept Grant to develop innovative magnetic sensors


EU support to bridge gap between theoretical research and commercial applications

Professor Mathias Kläui of the Institute of Physics at Johannes Gutenberg University Mainz (JGU) has received a grant from the European Research Council (ERC) to develop a new type of magnetic sensor. This allows Kläui to develop a concept for a sensor further that will eventually be able to record large numbers of revolutions. The new components will be designed for use in the automotive or automation industries and will replace current energy-hungry sensors. The support takes the form of a Proof of Concept Grant from the European Research Council to the value of EUR 150,000 that has been awarded on the basis of the initial results achieved by Kläui under his ERC Starting Grant. The new magnetic sensors are expected to be ready for pilot applications within 18 months of the project start.

Schematic view of two magnetic domain walls in a bent wire, representing the basic concept used for the development of the sensor

Ill.: Mathias Kläui

Current magnetic sensors used to precisely determine angular position have the disadvantage of only being able to measure angles between 0 and 360 degrees. They are thus incapable of detecting more than one revolution and are also unable to differentiate between angles of 10 and 370 degrees. There are many technical systems, such as a steering wheel, that make several revolutions in use. Professor Mathias Kläui's work group has come up with a concept that builds on the movements made by magnetic domain walls. There are multi-turn angle sensors that are presently available that can measure up to 16 revolutions. The new concept goes far beyond this and uses an innovative geometry to make a much larger number of revolutions quantifiable. This is of fundamental importance to automation technology, for example.

"We have already gained experience and validated the theoretical physics behind the new sensor in the lab. Now we have to see whether it can also be produced on an industrial scale at a reasonable price," said Kläui.

The new MultiRevolution Sensor does not need a power supply to record and save data, but merely for the occasional logging of the revolution counter. The new technology offers enormous advantages for industrial users. Current non-magnetic sensors that sense multiple turns are expensive and complex as they combine an angle sensor with non-volatile memory components. These can be replaced by a simple, energy-saving magnetic element. The expectation is that the market for micro-magnetic sensors will expand significantly as they can record thousands of revolutions rather than only one or very few and new applications can be opened up.

The European Research Council launched the Proof of Concept Grant in 2011. It is available only to those researchers who have already received an ERC Grant and now plan to further work on the concept developed during the supported project to transform it into a viable innovative product. Professor Mathias Kläui had already received an ERC Starting Grant to support his project "Spin currents in magnetic nanostructures (MASPIC)". Kläui has held a professorship at the Institute of Physics at Mainz University since 2011 and was appointed Director of the Materials Science in Mainz (MAINZ) Graduate School of Excellence in 2012. In July 2014, he was elected Coordinator of the Executive Committee of the Gutenberg Council for Young Researchers, which is dedicated to supporting excellent young academics at Mainz University.

Further information:
Professor Dr. Mathias Kläui
Condensed Matter Physics (KOMET)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-23633

Weitere Informationen: ; (press release "Domain walls as new information storage medium", 23 Sept. 2013) ;

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>