Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JEC Europe Innovation Award 2014 for Multi-Material Technology

13.03.2014

On 11 March 2014, in Paris, Dr. Michael Emonts of Fraunhofer IPT and Coert Kok of AFPT accepted the JEC Europe Innovation Award 2014 in the “Process” category for the new development of a tape laying head for the automated, laser-supported processing of thermoplast tapes, duroplast prepregs and dry-fiber rovings.

The so-called “Multi-material head” is particularly useful for smaller businesses, which want to process all the most common semi-finished materials on only one device, thereby, for example, satisfying the different requirements of automotive and aviation construction, as well as those of the oil and gas industry.

The compact tape laying head is constructed in a modular way, in order to be able to process different fiber materials, such as glass and carbon fibers, as well as various matrix materials on the same equipment, using lasers.

The basic platform, which can be adjusted to different robot and portal systems, may, as required, be fitted with exchangeable material feed and cutting units, cooling or heating elements, as well as additional individual modules.

This not only enables quick changes to be made between the various materials and different tape strengths and widths, it also significantly improves the userfriendliness of the system.
During the JEC 2014 in Paris, the Fraunhofer IPT will be demonstrating the multi-material head at the Innovation Showcase in Hall 7.2, Stand A 68.

The JEC Americas Innovation Award 2013 also went to Aachen

On 4 October 2013, the engineers of Fraunhofer IPT in Boston, USA were also given the JEC Americas Innovation Award 2013, representing the 18 partners involved in the EU “FibreChain” research project. The international research group from seven European countries were awarded the prize for developing a flexible, automated process chain for lightweight construction components made from fiber-reinforced plastics small or medium-sized runs.

The results of the project should improve the productivity with regard to three-dimensional, multi-layer light components, made from endless fiber-reinforced thermoplasts, by lowering costs and increasing resource and energy efficiency, as well as flexibility.

Over two years, the project partners developed new equipment, techniques and tools for an automated process chain for managing and processing the primary materials. The process chain involves not only the automated production of a variety of components made from fiber-reinforced thermoplasts, but also integrated quality assurance and adaptive process monitoring.

The basis for this is the twin production phases of the laser-reinforced tape head and the thermoform. Market research carried out in parallel confirmed the marketability of the component variations produced as examples. The process chain is shortly due to be implemented by the project partners in readiness for marketing.

Lightweight production technology from Aachen

During JEC 2014, in Paris, Fraunhofer IPT is also introducing, in Hall 7.2, Stand F35, current production technologies for lightweight construction. This includes a thermoform process that is ready to go into mass production, in order to be able to produce individual, deformation-free hollow sections from fiber-reinforced plastics, thereby saving time and money. The engineers from Aachen are also exhibiting an aircraft model, where fiber-optic sensors were used to monitor components made from fiber-reinforced plastics.

On a monitor, visitors are able to follow, live, the changes to the wing’s condition in terms of strain and stress. In addition, the Aachen engineers are also demonstrating technologies relating to handling semi-finished textile products, thermoforms made from organic sheets and millers and water-jet cutters made from fiber-reinforced plastics. Fraunhofer IPT’s range is completed by developments relating to the manufacture of products made from fiber composite materials for the medical sector.

Contact
Dr.-Ing. Michael Emonts
Fraunhofer Institute for Production Technologie IPT
Steinbachstraße 17
52074 Aachen
Phone +49 241 8904-150
michael.emonts@ipt.fraunhofer.de
www.ipt.fraunhofer.de

This press release and photos are also available on the internet at http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20140311JEC2014AwardParis.ht...

| Fraunhofer-Institut

Further reports about: Contact IPT construction fiber involved lasers mass materials processing produce required small technologies variety

More articles from Awards Funding:

nachricht A new EU funded training for young scientists in cancer research
28.07.2015 | Universität Luxemburg - Université du Luxembourg

nachricht Georg Forster Research Award for Brazilian Cardiovascular Researcher – Cooperation with the MDC
27.07.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Lobster-Eye imager detects soft X-ray emissions

29.07.2015 | Physics and Astronomy

First detection of lithium from an exploding star

29.07.2015 | Physics and Astronomy

Controlling phase changes in solids

29.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>