Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz funds the commercial application of three research projects

07.10.2013
The Helmholtz Association is providing over €20 million in funding for the validation and commercial application of research findings between 2011 and 2015. The goal is to swiftly translate these research results into practice.

Since the funding programme began two years ago, twelve projects have been approved.

In the latest round of applications, external experts selected three more projects on the basis of independent reports: a new diagnostic procedure, intelligent software for the latest generation of robots, and an innovative road signalling control system that influences traffic flow.

The Helmholtz Association believes these three research areas have huge potential for achieving successful commercial application and making a significant contribution to society.

The Helmholtz Validation Fund aims to bridge gaps between scientific findings and their commercial applications, and between public research and private investment. “The selected projects are based on interesting new technologies in the fields of health, robotics and traffic control, which are all highly relevant areas for the future of society,” said Rolf Zettl, Managing Director of the Helmholtz Association. “We are convinced that, with the aid of the Validation Fund, these approaches will soon be generating a lot of interest in industry.”

The road to market readiness
Zettl explained that the advice and financial support aims to help scientists at the Helmholtz Centres develop their research findings to the point where they can achieve added or commercial value. It is often the case, he said, that research lacks validation, i.e. some kind of evidence that its findings are of interest to industrial partners or that they can lead to a successful spin-off. Validation can be, for example, proof of applicability, a suitable production process, or a pre-clinical test.

The Helmholtz Association is designating around €2 million from its Validation Fund to the promotion of the three research projects LIVEcheck, RACE-LAB and VITAL in a funding programme that will last two years. The projects will receive a further €2 million in joint funding from the German Aerospace Center and Forschungszentrum Jülich.

The three projects
LIVEcheck (printed point-of-care diagnosis)
Alexey Yakushenko’s team at Forschungszentrum Jülich is developing electrochemical sensors designed to facilitate medical diagnosis and replace conventional methods. The sensors are manufactured in an automated nano-printing process with conductive inks, through which the signals can be picked out electronically rather than having to be visually evaluated as is currently the case. The new process will allow sensitive and very specific results to be produced on location (point-of-care) using a smartphone. The production costs associated with these sensors are much lower than those of current diagnostic methods, and they may therefore be able to serve as prototypes for detectors for diseases such as malaria. Following successful validation, the Helmholtz Association foresees the products being marketed via spin-offs.
RACE-LAB (robot application creator)
With their RACE-LAB project, Christoph Borst and his team at the German Aerospace Center are endeavouring to simplify the industrial use of robots and to achieve greater automation. The project is aimed in particular at industries that are working with the latest robot generation – machines generally characterised by a lightweight design, good interactional skills and high sensitivity. The scientists are developing an intelligent programme management system and software library that will enable various robotic capabilities such as drilling and screwing, and putting down and picking up objects. In addition, RACE-LAB will facilitate recurring interactive processes such as the handing over of objects from a human to a robot. Thus, complex procedures like the interaction between humans and machines will become safer and more dynamic with relatively straightforward programming procedures. This technology could also allow small and medium-sized businesses in areas as diverse as carpentry and medical technology to efficiently manufacture products with highly individual features automatically and economically – something that has been inconceivable until now.
VITAL (traffic-dependent, intelligent control of signal systems)
Robert Oertel and his team at the German Aerospace Center are working on a project that will improve control over the ever-increasing amount of traffic on our roads. The VITAL technology is able to control signalling lights – particularly traffic lights – in such a way that it significantly reduces the waiting time and overall journey time for road users. Consequently this technology lowers pollutant emissions – thus aiding climate protection efforts – and reduces infrastructure costs in local communities as they can continue to use existing structures. The advantages of this intelligent control system have already been demonstrated in computer simulations – now the scientists must also prove these benefits in actual practice. Once tested, the process then needs to be introduced as standard by the relevant road and traffic authorities so that local communities are allowed to make use of the technology later on, for example to obviate the need for road expansion or the construction of induction loops.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; and Aeronautics, Space and Transport. With almost 36,000 employees in 18 research centres and an annual budget of approximately €3.8 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the media:

Janine Tychsen
Stellvertretende Leiterin Kommunikation und Medien
Tel.: +49 30 206 329-24
janine.tychsen@helmholtz.de
Dr.-Ing. Jörn Krupa
Stabsstelle Technologietransfer
Tel.: +49 30 206 329-72
joern.krupa@helmholtz.de
Kommunikation und Medien
Büro Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Jan-Martin Wiarda | Helmholtz-Gemeinschaft
Further information:
http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>