Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HAW Hamburg receives over one million euros for climate and water research in Africa

19.05.2014

The Research and Transfer Centre “Applications of Life Sciences” (FTZ-ALS) at Hamburg University of Applied Sciences (HAW Hamburg) is receiving research funding from the EU in the EuropeAid programme amounting to over one million euros. The funding is for the “AFRHINET”, a study on rainwater utilisation and climate adaptation in Africa.

The AFRHINET project is the abbreviation of: “An ACP-EU Technology Transfer Network on Rainwater Harvesting Irrigation Management for Sustainable Dryland Agriculture, Food Security and Poverty Alleviation in Sub-Saharan Africa”. ACP stands for “African, Caribbean and Pacific Group of States”.


Agriculture in Africa: The climate change in Africa will most likely further intensify the water problems

FTZ-ALS

A contribution towards food security and poverty reduction shall also be provided within the framework of the AFRHINET programme. In concrete terms, in the next three years it shall be examined how Africa’s renewable fresh water resources – above all rainwater – can be utilised in a more optimal manner.

“We are concerned with establishing a more effective management of rainwater in Africa. In the process, the AFRHINET project will primarily create new competencies, strategies and an awareness of a more effective monitoring and management of rainwater. The aim is that people have more water available overall despite the same resource for their supply and agriculture. Only in this manner can life in some African regions be preserved at all,” says the study project manager, HAW professor and well-known climate researcher Prof. Dr. Dr. Walter Leal.

According to statements by Prof. Walter Leal, the climate change in Africa will most likely further intensify the water problems already existing there. Largely consistent computational models show a clear reduction of runoff volumes of rivers in North Africa and a slight increase in East Africa. “Nearly two-thirds of the African continent south of the Sahara has a semi-arid to arid climate”, says Prof. Leal. At the moment, nearly two-thirds of the surface of Sub-Saharan Africa is “arid or semi-arid”. Less than 1,000 cubic metres of water per year and person are available to more than 300 million people living there, i.e. they suffer from severe water shortage. Now the regional availability of water shall be improved through a more optimal utilisation of rainwater.

The AFRHINET project will examine the current situation in Ethiopia, Kenya, Mozambique and Zimbabwe, and test methods which can lead to an optimisation of rainwater utilisation, particularly in areas such as collection, storage and distribution. Health aspects will also be examined. Technology transfer centres shall be established in Hamburg, Addis Ababa, Maputo, Harare und Nairobi for this purpose.

Contacts:
Prof. Dr. (mult.) Dr. h.c. (mult.) Walter Leal, Head of FTZ-ALS and AFRHINET Project Coordinator
Tel. +49.40.428 75-6313
walter.leal@haw-hamburg.de

AFRHINET coordination team
Josep de la Trincheria/Johanna Vogt
afrhinet@ls.haw-hamburg.de

Weitere Informationen:

http://www.haw-hamburg.de/ftz-als.html
http://www.haw-hamburg.de/news-online-journal/newsdetails/artikel/eine-million-e...

Dr. Katharina Jeorgakopulos | idw - Informationsdienst Wissenschaft

Further reports about: Caribbean Dryland Harvesting Nairobi Sahara Security Technology rainwater reduction

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>