Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Wins NSF Award for Next-Gen Supercomputing

22.10.2009
The Georgia Institute of Technology today announced its receipt of a five-year, $12 million Track 2 award from the National Science Foundation’s (NSF) Office of Cyberinfrastructure to lead a partnership of academic, industry and government experts in the development and deployment of an innovative and experimental high-performance computing (HPC) system.

The award provides for the creation of two heterogeneous, HPC systems that will expand the range of research projects that scientists and engineers can tackle, including computational biology, combustion, materials science, and massive visual analytics.

The project brings together leading expertise and technology resources from Georgia Tech’s College of Computing, Oak Ridge National Laboratory (ORNL), University of Tennessee, National Institute for Computational Sciences, HP and NVIDIA.

NSF’s Track 2 program is an activity designed to fund the deployment and operation of several leading-edge computing systems operating at or near the petascale. An underlying goal is to advance U.S. computing capability in order to support computational scientists and engineers in the pursuit of scientific discovery. The award announced today is the part of the fourth round of awards in the Track 2 program.

“Our goal is to develop and deploy a novel, next-generation system for the computational science community that demonstrates unprecedented performance on computational science and data-intensive applications, while also addressing the new challenges of energy-efficiency,” said Jeffrey Vetter, joint professor of computational science and engineering at Georgia Tech and Oak Ridge National Laboratory.

“The user community is very excited about this strategy,” Vetter continued. For example, James Phillips, senior research programmer at the University of Illinois who leads development of the widely-used NAMD application, says "Our experiences with graphics processors over the past two years have been very positive and we can't wait to explore the new Fermi architecture; this new NSF resource will provide an ideal platform for our large biomolecular simulations."

Georgia Tech’s Vetter will lead the five-year project as principal investigator. The project team is comprised of luminaries in the HPC field, including a Gordon Bell Prize winner and previous recipients of the NSF Track 2B award. Co-principal investigators on the project are Prof. Jack Dongarra (University of Tennessee and ORNL), Prof. Karsten Schwan (Georgia Tech), Prof. Richard Fujimoto (Georgia Tech), and Prof. Thomas Schulthess (Swiss National Supercomputing Centre and ORNL).

The platforms will be developed and deployed in two phases, with initial system delivery planned for deployment in early 2010. This system’s innovations in performance and power will be achieved through heterogeneous processing based on widely-available NVIDIA graphics processing units (GPUs). As industry partners, HP and NVIDIA will be providing the computational systems, platforms and processors needed to develop the system.

“Research institutions are looking for energy-efficient, high-performance computing architectures that can speed time to solution,” said Ed Turkel, manager of business development in the Scalable Computing and Infrastructure business unit at HP. “The combination of HP’s industry-standard HPC server technology with NVIDIA processors delivers increased performance and faster application development, accelerating higher education research projects.”

The initial system will pair hundreds of HP high-performance Intel processors with NVIDIA’s new next-generation CUDA architecture, codenamed Fermi, designed specifically for high-performance computing. This project will be the first of the Track 2 awards to realize the vast potential of GPUs for HPC.

“Computational science is a key area driving the worldwide application of GPUs for high-performance computing,” said Bill Dally, chief scientist at NVIDIA. “GPUs working in concert with CPUs is the architecture of choice for future demanding applications.”

A critical component of the program is a focus on education, outreach and training to expand the knowledge and understanding of HPC among a broader audience. The Georgia Tech team will conduct workshops to attract and train new users for the system, engage historically underrepresented groups such as women and minorities, and educate future generations on the vast potential of high-performance computing as a career field.

More information on the project and its resources is available at http://keeneland.gatech.edu.

Stefany Wilson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>