Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ERC Advanced Grant for Prof. Detlef Schuppan / Acclaim for cutting-edge research in organ fibrosis

Gastroenterologist of Mainz University receives the European Union's highest endowed research funding award / Acclaim for cutting-edge research in organ fibrosis conducted at the Mainz University Medical Center

The European Research Council (ERC) has earmarked about €2.5 million to fund the research being conducted by gastroenterologist and biochemist Professor Dr. Dr. Detlef Schuppan at Mainz University Medical Center. Professor Schuppan is a specialist in liver diseases ranging from fibrosis to cirrhosis (the terminal stage of fibrosis) to hepatic cancer.

His aim is to develop therapeutic strategies that will slow or even reverse the pathological development of fibrous connective tissue in body organs. Many patients could benefit from this development, because the advanced stages of fibrosis are the main cause of death in those suffering from chronic hepatic diseases and other chronic conditions.

Continuous inflammation can lead to the abnormal growth of connective tissue in numerous organs, frequently resulting in organ failure. To date, however, there has been a lack of antifibrotic therapies for treating patients with diagnosed advanced-stage fibrosis. It is estimated that in Europe alone, 0.5 to 1 percent of the population are affected by end stage liver fibrosis, i.e. cirrhosis, a condition with a high risk of liver decompensation, liver cancer, and death.

"Developing a method in which the process of fibrosis progression can be measured in individual patients at-risk and for whom the effect of therapies to inhibit fibrosis progression or to induce its reversal can be assessed with high sensitivity and non-invasively is the key to effective treatments for advanced-stage fibrosis," explains Professor Schuppan convinced of the approach in his research. Schuppan is investigating the use of quantitative imaging procedures for fibrosis and fibrosis progression that is non-invasive and thus more patient-friendly, and which he hopes can be used to determine to what extent scar tissue is accumulating in the liver and to measure the amount and activity of the cells involved in scar tissue deposition in patients. He collaborates with Professor Dr. Frank Rösch and Junior Professor Dr. Tobias Roß of the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz. "This is thus a cooperative grant that is helping to build a bridge between the University Medical Center and fundamental research," says Professor Schuppan.

The results of pilot studies conducted by Professor Schuppan in collaboration with Dr. John V. Frangioni at Harvard Medical School have been positive to date, indicating that there is a good chance that the aims of the research project will be realized. With the aid of small, harmless quantities of radioactively-labeled substances, it has been possible to visualize and quantitate in vivo cell surface molecules that occur only on cells active in scar formation and thus indicate the activity of fibrosis progression. "These first pilot studies are highly promising and represent an excellent basis for developing a clinically applicable imaging method for diagnosing fibrosis and, more importantly, the dynamics of fibrosis progression. When further refined, this method may permit the clinical efficacy testing of antifibrotic therapies in only a few patients and for short time periods, instead of having to treat several hundreds of patients for 2 to 3 years, as would be necessary with the current technology. Furthermore, it would allow an individualized dose adjustment of such therapy according to the therapy response. Ideally, it should be possible to apply our research results to fibrotic diseases of other organs, such as pulmonary fibrosis," states Professor Schuppan, who has been working at the Department of Internal Medicine I of Mainz University Medical Center since the end of 2010. He previously held a professorship at Harvard Medical School and continues to be a faculty member there.

"The ERC Advanced Grant awarded to Professor Schuppan is confirmation of the effectiveness of our future-oriented hiring policy at Mainz University Medical Center. This grant is another key factor that will enable us to compete with other German as well as international major research-led universities," emphasizes Professor Dr. Dr. Reinhard Urban, Scientific Director of Mainz University Medical Center. Last year, Urban, in conjunction with Professor Dr. Peter Galle, head of the Department of Medicine I, managed to persuade Schuppan, who was born in Essen, Germany, to relocate from Harvard Medical School to come to Mainz.

The ERC Advanced Grant, the European Union's highest endowed research funding award, is comparable in value to the Gottfried Wilhelm Leibniz Award, which is the most prestigious German research award. To qualify to receive an ERC Advanced Grant, a scientist must demonstrate individual excellence in research. The European Research Council uses ERC Advanced Grants to support established researchers working at the cutting-edge of their disciplines. The aim is to promote ground-breaking fundamental research and applied research in Europe. Administrative support, not only for this grant, is provided by the European Project Office of the Scientific Board of Mainz University Medical Center.

Petra Giegerich | idw
Further information:

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>