Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral reefs: New third-party funding success at the University of Bremen

23.02.2016

The German Research Foundation (DFG) now approved the new 3-year research project NICE for University of Bremen and the work group Marine Ecology under leadership of Prof. Dr. Christian Wild from the faculty of Biology and Chemistry.

Nitrogen (N) is one of the limiting nutrients in highly productive coral reef environments and thus plays a key role in the metabolism of reef organisms and the functioning of their ecosystems.


Coral reef in the Red Sea

"Foto: Christian Wild"

Recent research of the work group Marine Ecology revealed that microbe-mediated dinitrogen (N2) fixation is ubiquitous in coral reefs, and that active N2-fixing microbes (diazotrophs) are associated with many different important reef organisms. This for instance applies for corals, sponges, and algae.

These diazotrophs may form characteristic associations with scleractinian corals, the key reef ecosystem engineers. However, the interplay of N2 fixation with other key processes of the marine N cycle, i.e. nitrification and denitrification, and the susceptibility of all these processes to key environmental disturbances (e.g. warming and nutrient enrichment) has not yet been investigated in coral reefs.

Such processes are very likely important features of microbial N cycling in reef organisms, particularly hard corals, which can allow them to adapt to environmental changes in their fragile and important ecosystems. N2 fixation in corals appears to be essential for overcoming N starvation in oligotrophic reef environments. At the same time, in the presence of nutrient enrichment caused by human activities, both nitrification and denitrification may be important processes for maintaining the symbiotic algae (Symbiodinium) growth-limited in the coral host.

In this context, expected increases in sea surface temperature resulting from global warming can potentially alter microbial N cycling in corals and other reef organisms. Ultimately, an imbalance between N gains and losses may impact the delicate equilibrium that regulates coral symbiosis, resulting in the onset of bleaching. The state of knowledge suggests that a disturbance of microbial N cycling via ocean warming and dissolved organic carbon (DOC) eutrophication may be involved in coral bleaching.

The approved project NICE (NItrogen Cycling in Coral Reef organisms under Environmental change), using a series of interconnected descriptive and experimental studies at the central Red Sea, will thus quantify all major processes and identify associated microbial players of the N cycle in hard corals and other common reef organisms including soft corals and algae.

An interdisciplinary approach combining expertize from coral physiology, molecular microbial ecology, biogeochemistry, and reef ecology will allow testing the hypotheses mentioned above. Importantly, a range of global and local environmental disturbances (increased temperature, and inorganic as well as organic eutrophication) will be simulated to understand N cycle responses.

NICE thereby will provide novel and fundamental knowledge of N cycling in coral reef organisms in comparison. The results generated by this project will effectively contribute to a better science-based management of coral reefs.

Further information:

Universität Bremen
Fachbereich Biologie / Chemie
Marine Ecology
Prof. Dr. Christian Wild
Tel. +49 -421 218 6336
E-Mail: christian.wild@uni-bremen.de

Eberhard Scholz | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bremen.de

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>