With the Google Research Award, Professor Samuel Kounev and his team of scientists have won a prestigious award that comes with a high prize money. Their project on more efficient server utilisation was chosen out of 800 other applicants from 48 countries.
Downloading your favourite song, streaming a popular movie or shopping online – we are using a great number of online services on mobile phones, tablet computers or PCs. Every day servers in data centres run at the capacity limit to process the requests by users.
According to Samuel Kounev, Professor of Computer Science at the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, servers are presently working inefficiently. He has a vision: systems capable of predicting high demand that prepare for such load peaks and shut themselves down when demand is low.
The Internet as a climate killer
"Today, there are huge data centres worldwide in which the majority of servers are not used to capacity. However, these servers must be permanently ready to respond to possible requests by Internet users," Kounev explains. This drives operating and energy costs through the roof. Especially servers in data centres are responsible for a significant amount of carbon dioxide emissions. "On a global scale, data centres produce about as much CO2 as air travel.“ And this is too much.
With research assistant, Simon Spinner, he has been studying how servers can be used more efficiently to enable resource-saving Internet usage for quite some time. Google also believes in the promise of sustainable Internet usage in the future and rewarded the project with its Google Research Award in autumn 2015.
The award comes with a prize money of 63,000 euros. Some 800 research teams had presented their projects to a jury. Besides Harvard University or Stanford University, the jury was also convinced by the research work of the JMU computer scientists. A total of 113 projects worldwide are sponsored through a Google Award.
Always one step ahead of Internet users
For servers to work more efficiently, it is necessary to forecast load peaks. "Instead of waiting for systems to respond to increased demand as in the past, we are trying to develop methods that can reliably forecast such peak periods and provide the corresponding resources," Simon Spinner explains.
Together with Kounev, the doctoral student works on combining existing statistical methods to estimate resource consumption to enhance their reliability and accuracy, because each method has its strengths - and estimations do not always deliver reliable statements as to the actual resource consumption.
The scientists baptised their newly developed IT tool "LibReDE" which enables better prediction of resource demands. The programme is available as open source software. With their research, the Würzburg scientists have accomplished important pioneering work in this field. Because in the past, the individual methods had to be selected manually in a time-consuming and error-prone process.
Close cooperation with partners in Silicon Valley
Kounev and Spinner had regular phone conversations with their partners in Silicon Valley to deliberate about new ideas or research approaches. According to Kounev, the cooperation is a win-win situation for the University of Würzburg and for Google: "The high prize money allows us to finance new research positions and equipment to fully concentrate on our work."
At present, the computer scientists are working on testing their methods in practice in a case study with Google. "It would be the crowning achievement of our work to use our tools on data of Google servers," Spinner says. Until then, however, various legal concerns need to be eliminated: First all data have to be anonymised before the case study can be conducted. The Franconian research team is optimistic to start first practical tests with Google soon.
Contact
Prof. Dr. Samuel Kounev, Chair of Computer Science II (Software Engineering) of the Julius-Maximilians-Universität Würzburg, JMU, Phone +49 931 31-82452, samuel.kounev@uni-wuerzburg.de
http://descartes.tools/librede The LibReDE tools is available as open source software
http://se.informatik.uni-wuerzburg.de/news/single/artikel/google-research-award/ Cooperation of the Würzburg computer scientists with Google
http://googleresearch.blogspot.de/2015/08/google-faculty-research-awards-summer.... More about the Google Research Award
Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further reports about: > Google Research Award > Internet users > Julius-Maximilians-Universität > Silicon > Silicon Valley > carbon dioxide emissions > dioxide emissions > global scale > resource consumption
Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)
ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Health and Medicine
Spider silk key to new bone-fixing composite
20.04.2018 | Materials Sciences
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Earth Sciences