Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Aircraft & Ground Vehicle Collaborate at Rodeo

14.10.2010
Researchers at the Georgia Tech Research Institute (GTRI) are poised to show the U.S. Army an advanced approach to enabling autonomous collaboration among dissimilar robotic vehicles.

The GTRI system, called the Collaborative Unmanned Systems Technology Demonstrator (CUSTD), employs two small-scale aircraft and a full-size automobile to perform a complex, interactive mission without human intervention. The demonstration system uses onboard computers running advanced collaborative-vehicle software – along with novel sensors and open standards-based communications and interfaces -- to create an autonomous system with unique capabilities.

GTRI's CUSTD system will take part in Robotics Rodeo 2010, scheduled for Oct. 12-15 at Fort Benning, Ga. The Rodeo is hosted by the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), based near Detroit. A number of invited robotic-research teams will demonstrate their work at the event.

"We believe our system represents the leading edge of demonstrating collaborative autonomous vehicle capabilities," said Lora Weiss, a principal research engineer who is a member of GTRI’s Unmanned and Autonomous Systems team. "This system demonstrates not only the collaborative interoperability possible among dissimilar vehicles, but also the numerous sensing technologies that can be included onboard as interchangeable payloads -- chemical and infrared sensors, still and video cameras, and sophisticated signal- and data-processing."

The GTRI system uses two unmanned aerial vehicles (UAVs) that have nine-foot wingspans, seven-pound scientific-instrument payloads, and global positioning systems (GPS) for navigation. The unmanned ground vehicle (UGV) is a full-size Porsche Cayenne.

The aircraft require human guidance during takeoff, but while aloft they become autonomous for both navigation and target-locating tasks. The Porsche -- the same “Sting” vehicle entered by Georgia Tech in the DARPA Urban Challenge – is fully autonomous.

“The vehicles' very dissimilarity helps them collaborate effectively,” said Charles Pippin, a GTRI research scientist who led the CUSTD effort.

Fast-moving unmanned air vehicles, he explained, can find targets over a wide area, but their altitude and the limitations of their lightweight sensors can lessen the quality of gathered data. However, the UAVs can call in an unmanned ground vehicle – equipped with large, complex sensors and cameras -- to analyze the target location more fully.

Personnel from several GTRI units have participated in the CUSTD effort, said Pippin, who like Weiss is a member of GTRI's Unmanned and Autonomous Systems team. CUSTD's current capabilities are based on extensive research and testing, including more than 50 test flights conducted at Fort Benning and other locations throughout the past year.

A demonstration opportunity such as the Robotics Rodeo, Pippin said, allows researchers to dramatize how well multiple autonomous robots can now collaborate.

"It's hard to illustrate the effectiveness of collaborative interoperability and autonomy algorithms in a simulation," he said. "When onlookers see the technology demonstrated on hardware platforms, then it becomes very real."

In a typical CUSTD scenario, the two aircraft search for an existing target over a wide area. When one plane spots the target, it radios its location using GPS coordinates to the unmanned ground vehicle, which then finds its way around buildings and along roads to the target.

At the same time, the unmanned air vehicle over the target can ask the second aircraft to fly to the target and use its sensors to further analyze the situation. Such flexibility can be important, Pippin said, because UAVs are often outfitted with different sensors due to weight and cost considerations.

One technique that is still under development at GTRI -- and is proving valuable for vehicle collaboration -- is called market-based auctions, Pippin said. This approach uses an "auction" type of algorithm that lets robotic vehicles "bid" on a given task. Using this method, unmanned vehicles can autonomously divide up work on the spot in the most efficient way.

In an auction-technology scenario, an unmanned air vehicle over a target might send out a bid to other nearby UAVs, asking which among those airplanes that are outfitted with a particular sensor is closest to the target. The UAV that best complies with both requirements – equipment and proximity -- wins the bid.

In a GTRI experiment, unmanned air vehicles using a market-based approach reduced the travel required to complete a task by nearly 50 percent. The result was a substantial saving in both time and fuel.

Weiss explained that GTRI's CUSTD system is standards compliant, an important consideration in current defense-technology development. All GTRI autonomous-system designs now comply with the Standard Interface of the Unmanned Control System for NATO UAV interoperability (STANAG 4586) and with the Joint Architecture for Unmanned Systems (JAUS) scripting language.

"By developing these systems to be STANAG and JAUS compliant, we're building in future interoperability with other unmanned systems produced by different vendors," Weiss said. "If upcoming systems are going to be able to communicate, as well as operate with the control-system designs now being developed, they’ll need to be standards compliant."

The CUSTD system also makes use of FalconView™, a Windows-based mapping application developed by GTRI for the Department of Defense. FalconView supports many map types, such as aeronautical charts, satellite images and elevation maps. FalconView can be used by a ground-based station to monitor and control the system.

In the past several years, GTRI has been bringing autonomous vehicle research under one umbrella that includes all aspects of systems-payload, sensor, autonomy logic and collaborative operations. Research now also includes unmanned underwater vehicles and space vehicles.

The Robotics Rodeo will consist of two separate events. The Extravaganza is open to the public. The Robotic Technology Observation, Demonstration and Discussion (RTOD2), closed to the public, allows research teams to demonstrate their technologies to government observers and contractors.

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>