Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic Aircraft & Ground Vehicle Collaborate at Rodeo

14.10.2010
Researchers at the Georgia Tech Research Institute (GTRI) are poised to show the U.S. Army an advanced approach to enabling autonomous collaboration among dissimilar robotic vehicles.

The GTRI system, called the Collaborative Unmanned Systems Technology Demonstrator (CUSTD), employs two small-scale aircraft and a full-size automobile to perform a complex, interactive mission without human intervention. The demonstration system uses onboard computers running advanced collaborative-vehicle software – along with novel sensors and open standards-based communications and interfaces -- to create an autonomous system with unique capabilities.

GTRI's CUSTD system will take part in Robotics Rodeo 2010, scheduled for Oct. 12-15 at Fort Benning, Ga. The Rodeo is hosted by the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), based near Detroit. A number of invited robotic-research teams will demonstrate their work at the event.

"We believe our system represents the leading edge of demonstrating collaborative autonomous vehicle capabilities," said Lora Weiss, a principal research engineer who is a member of GTRI’s Unmanned and Autonomous Systems team. "This system demonstrates not only the collaborative interoperability possible among dissimilar vehicles, but also the numerous sensing technologies that can be included onboard as interchangeable payloads -- chemical and infrared sensors, still and video cameras, and sophisticated signal- and data-processing."

The GTRI system uses two unmanned aerial vehicles (UAVs) that have nine-foot wingspans, seven-pound scientific-instrument payloads, and global positioning systems (GPS) for navigation. The unmanned ground vehicle (UGV) is a full-size Porsche Cayenne.

The aircraft require human guidance during takeoff, but while aloft they become autonomous for both navigation and target-locating tasks. The Porsche -- the same “Sting” vehicle entered by Georgia Tech in the DARPA Urban Challenge – is fully autonomous.

“The vehicles' very dissimilarity helps them collaborate effectively,” said Charles Pippin, a GTRI research scientist who led the CUSTD effort.

Fast-moving unmanned air vehicles, he explained, can find targets over a wide area, but their altitude and the limitations of their lightweight sensors can lessen the quality of gathered data. However, the UAVs can call in an unmanned ground vehicle – equipped with large, complex sensors and cameras -- to analyze the target location more fully.

Personnel from several GTRI units have participated in the CUSTD effort, said Pippin, who like Weiss is a member of GTRI's Unmanned and Autonomous Systems team. CUSTD's current capabilities are based on extensive research and testing, including more than 50 test flights conducted at Fort Benning and other locations throughout the past year.

A demonstration opportunity such as the Robotics Rodeo, Pippin said, allows researchers to dramatize how well multiple autonomous robots can now collaborate.

"It's hard to illustrate the effectiveness of collaborative interoperability and autonomy algorithms in a simulation," he said. "When onlookers see the technology demonstrated on hardware platforms, then it becomes very real."

In a typical CUSTD scenario, the two aircraft search for an existing target over a wide area. When one plane spots the target, it radios its location using GPS coordinates to the unmanned ground vehicle, which then finds its way around buildings and along roads to the target.

At the same time, the unmanned air vehicle over the target can ask the second aircraft to fly to the target and use its sensors to further analyze the situation. Such flexibility can be important, Pippin said, because UAVs are often outfitted with different sensors due to weight and cost considerations.

One technique that is still under development at GTRI -- and is proving valuable for vehicle collaboration -- is called market-based auctions, Pippin said. This approach uses an "auction" type of algorithm that lets robotic vehicles "bid" on a given task. Using this method, unmanned vehicles can autonomously divide up work on the spot in the most efficient way.

In an auction-technology scenario, an unmanned air vehicle over a target might send out a bid to other nearby UAVs, asking which among those airplanes that are outfitted with a particular sensor is closest to the target. The UAV that best complies with both requirements – equipment and proximity -- wins the bid.

In a GTRI experiment, unmanned air vehicles using a market-based approach reduced the travel required to complete a task by nearly 50 percent. The result was a substantial saving in both time and fuel.

Weiss explained that GTRI's CUSTD system is standards compliant, an important consideration in current defense-technology development. All GTRI autonomous-system designs now comply with the Standard Interface of the Unmanned Control System for NATO UAV interoperability (STANAG 4586) and with the Joint Architecture for Unmanned Systems (JAUS) scripting language.

"By developing these systems to be STANAG and JAUS compliant, we're building in future interoperability with other unmanned systems produced by different vendors," Weiss said. "If upcoming systems are going to be able to communicate, as well as operate with the control-system designs now being developed, they’ll need to be standards compliant."

The CUSTD system also makes use of FalconView™, a Windows-based mapping application developed by GTRI for the Department of Defense. FalconView supports many map types, such as aeronautical charts, satellite images and elevation maps. FalconView can be used by a ground-based station to monitor and control the system.

In the past several years, GTRI has been bringing autonomous vehicle research under one umbrella that includes all aspects of systems-payload, sensor, autonomy logic and collaborative operations. Research now also includes unmanned underwater vehicles and space vehicles.

The Robotics Rodeo will consist of two separate events. The Extravaganza is open to the public. The Robotic Technology Observation, Demonstration and Discussion (RTOD2), closed to the public, allows research teams to demonstrate their technologies to government observers and contractors.

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Automotive Engineering:

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>