Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Economical and cleaner cars with lean-burn catalytic converter

13.07.2007
Dutch researcher Karen Scholz has taken a careful look at the properties of a new type of catalytic converter found in cars. For this so-called NOx Storage Reduction (NSR) catalytic converter the fuel is alternately combusted in the engine under oxygen-rich (lean) and fuel-rich (rich) conditions. Such diesel engines and 'lean-burn' petrol engines are more economical than conventional engines.

The current strict environmental legislation demands advanced concepts to reduce the emission of harmful gasses by cars. Reducing the emission of nitrous oxides (NOx) emitted by diesel and lean-burn petrol engines is one of the challenges faced. These economical engines produce exhaust fumes that are particularly rich in oxygen and therefore the conventional three-way catalytic converter is not suitable for converting the generated NOx into nitrogen. The current trend is therefore to add specific components such as barium to the catalytic converter to store the NOx formed.

In this new type of NOx Storage Reduction (NSR) catalytic converter the diesel or petrol combustion in the engine takes place alternately over long oxygen-rich and short fuel-rich periods. During a long oxygen-rich period the generated NOx is stored in the barium component. When this component becomes saturated the catalyst is regenerated. This happens during the short fuel-rich period when an oxygen-poor emission gas is produced. The NOx stored is released and subsequently reduced to nitrogen over a precious metal such as platinum. Scholz investigated this NSR mechanism to gain a better understanding of how the storage component functions during the oxygen-rich and fuel-rich periods.

Reaction model

The researcher carried out experiments in a laboratory reactor containing the NSR catalyst. She studied the behaviour of the catalyst in detail, including analysis of the effect of the various forms in which barium occurs in the catalytic converter, the effect of the presence of carbon dioxide and water in the exhaust gas, and the effect of the various reducing agents, such as carbon monoxide, hydrogen, and ethylene on the NOx storage and reduction. The research has yielded important new insights with respect to the function of various components in the catalytic converter. Scholz has also produced a practical mathematical model that describes the various chemical reactions in the catalytic converter.

Knowledge for everyday practice

Using this reaction model, a regulatory system in the car can determine when the maximum NOx capacity of the catalyst has been reached, followed by the length of time extra fuel must be injected to regenerate the catalyst. The research was carried out in cooperation with the car manufacturers PSA Peugeot Citroen, Toyota and Ford, the car development company PD&E Automotive Solutions, catalytic converter manufacturer Engelhard De Meern (now BASF), and with TNO Automotive, Shell, E.P. Controls and IPCOS.

Dr Karen Scholz | alfa
Further information:
http://www.tue.nl
http://www.nwo.nl/nwohome.nsf/pages/NWOA_74JFVP_Eng?Opendocument

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>