Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT recommends special steels for automotive industry

30.08.2006
Technical Research Centre of Finland (VTT) has conducted a research indicating that new stainless special steels increase the safety of vehicle superstructures.

They are also easy to recycle, which reduces the vehicle’s life-cycle costs. Tests show that new steel structures reduce the risk of corrosion, and hence also the cost of superstructure maintenance. The safety requirements can be met at lower weight using these new stainless steels that offer the European automotive industry an enhanced competitive edge.

Tests carried out at VTT and at the Ford Research Center indicate that superstructures made from the new special steels retain their durability in varying, long-term stress situations and offer higher safety in crash collisions than structures made of current materials.

VTT studied and developed new spot welding, adhesive and hybrid joining processes for vehicle superstructure assembly. Using weldbonding, a combination of spot welding and adhesive bonding to join elements made from special steel helps delay the onset of potential corrosion. This also enhances vehicle safety in the long run, and reduces maintenance costs.

Utilization of the new stainless steels for manufacturing vehicle superstructures still requires completion of the development work on product manufacturing methods. Using the new steels will then also be more economically viable.

While the new steels initially yield most benefits when used in heavy-duty vehicles (ships, trains, trucks and buses), all of which have a long service life, they will also be gradually introduced to top-quality passenger cars. Superstructure elements made from the new steels will probably become common within a few years.

VTT’s research showed that these new stainless steels (extra formable austenitic steels) are highly potential to reduce vehicles’ life-cycle costs, since they extend the lifetime of the superstructures and provide them with added durability. They may also be more easily recycled for high-quality raw materials. The introduction of the new steels to other industrial sectors can be awaited in a near future thanks to their good mechanical properties, lower life-cycle costs and applied research on related benefits.

In addition to R&D organisations: VTT, Helsinki University of Technology (TKK) and OCAS belonging to the Arcelor group, the project involved car manufacturers Fiat, Ford, Volvo and PSA. Materials and moulding expertise was provided by steel constructors Outokumpu, Arcelor, Acerinox and Batz.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi/uutta/2006/aineisto/teraskulutus2006.pdf

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>