Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT recommends special steels for automotive industry

30.08.2006
Technical Research Centre of Finland (VTT) has conducted a research indicating that new stainless special steels increase the safety of vehicle superstructures.

They are also easy to recycle, which reduces the vehicle’s life-cycle costs. Tests show that new steel structures reduce the risk of corrosion, and hence also the cost of superstructure maintenance. The safety requirements can be met at lower weight using these new stainless steels that offer the European automotive industry an enhanced competitive edge.

Tests carried out at VTT and at the Ford Research Center indicate that superstructures made from the new special steels retain their durability in varying, long-term stress situations and offer higher safety in crash collisions than structures made of current materials.

VTT studied and developed new spot welding, adhesive and hybrid joining processes for vehicle superstructure assembly. Using weldbonding, a combination of spot welding and adhesive bonding to join elements made from special steel helps delay the onset of potential corrosion. This also enhances vehicle safety in the long run, and reduces maintenance costs.

Utilization of the new stainless steels for manufacturing vehicle superstructures still requires completion of the development work on product manufacturing methods. Using the new steels will then also be more economically viable.

While the new steels initially yield most benefits when used in heavy-duty vehicles (ships, trains, trucks and buses), all of which have a long service life, they will also be gradually introduced to top-quality passenger cars. Superstructure elements made from the new steels will probably become common within a few years.

VTT’s research showed that these new stainless steels (extra formable austenitic steels) are highly potential to reduce vehicles’ life-cycle costs, since they extend the lifetime of the superstructures and provide them with added durability. They may also be more easily recycled for high-quality raw materials. The introduction of the new steels to other industrial sectors can be awaited in a near future thanks to their good mechanical properties, lower life-cycle costs and applied research on related benefits.

In addition to R&D organisations: VTT, Helsinki University of Technology (TKK) and OCAS belonging to the Arcelor group, the project involved car manufacturers Fiat, Ford, Volvo and PSA. Materials and moulding expertise was provided by steel constructors Outokumpu, Arcelor, Acerinox and Batz.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi/uutta/2006/aineisto/teraskulutus2006.pdf

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>