Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon fiber cars could put U.S. on highway to efficiency

08.03.2006
Highways of tomorrow might be filled with lighter, cleaner and more fuel-efficient automobiles made in part from recycled plastics, lignin from wood pulp and cellulose.

First, however, researchers at the Department of Energy’s Oak Ridge National Laboratory, working as part of a consortium with Ford, General Motors and DaimlerChrysler, must figure out how to lower the cost of carbon fiber composites. If they are successful in developing high-volume renewable sources of carbon fiber feedstocks, ORNL’s Bob Norris believes they will be on the road to success.

"Whereas today the cost to purchase commercial-grade carbon fiber is between $8 and $10 per pound, the goal is to reduce that figure to between $3 and $5 per pound," said Norris, leader of ORNL’s Polymer Matrix Composites Group. At that price, it would become feasible for automakers to use more than a million tons of composites - approximately 300 pounds of composites per vehicle - annually in the manufacturing of cars.

The big advantage of carbon fiber is that it is one-fifth the weight of steel yet just as strong and stiff, which makes it ideal for structural or semi-structural components in automobiles. Replacing half the ferrous metals in current automobiles could reduce a vehicle’s weight by 60 percent and fuel consumption by 30 percent, according to some studies. The resulting gains in fuel efficiency, made in part because smaller engines could be used with lighter vehicles, would also reduce greenhouse gas and other emissions by 10 percent to 20 percent.

All of this would come with no sacrifice in safety, as preliminary results of computer crash simulations show that cars made from carbon fiber would be just as safe - perhaps even safer - than today’s automobiles. Today’s Formula 1 racers are required by mandate to be made from carbon fiber to meet safety requirements.

Progress in developing affordable carbon fiber composites has been steady as ORNL researchers with the support of the University of Tennessee work to optimize raw materials and spinning processes for alternative forms of carbon fiber precursors from renewable sources.

Another focus is on developing an efficient carbon fiber oxidation process, which would significantly increase production and lower cost of this raw material. One promising possibility is plasma processing technology to rapidly oxidize precursor fibers. In this area, ORNL is working with Atmospheric Glow Technologies, a high-tech company spun off from UT that has expertise in atmospheric pressure plasma processing. This is a technique to generate and use plasmas in a non-traditional way - in the open atmosphere instead of in a carefully controlled environment such as in inert gases and at very low pressures.

ORNL is also establishing a modular carbon fiber research pilot line to evaluate these revolutionary new processes on a comparable basis against conventional industrial processes.

"The goal is to demonstrate and transfer the technology to producers of carbon fiber, which could be existing carbon fiber producers or perhaps companies in the forest product industries," Norris said.

Researchers also are working to develop techniques to allow high-volume cost-effective processing of carbon fiber, hybrid glass-carbon fiber and reinforced thermoplastic material forms. In addition, ORNL recently installed an advanced preforming machine that features a robotically actuated arm that chops and sprays fiber and a binder in powder form to create fiber preforms. After being set at elevated temperature, the preforms are injected with resin in a mold and consolidated under pressure to create the final part.

"The preforming process is the first step in creating polymer composite structural and semi-structural auto parts that are lightweight and cost-competitive with metal parts they would replace," Norris said.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. This research is funded by DOE’s Office of Energy Efficiency and Renewable Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>