Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carbon fiber cars could put U.S. on highway to efficiency

Highways of tomorrow might be filled with lighter, cleaner and more fuel-efficient automobiles made in part from recycled plastics, lignin from wood pulp and cellulose.

First, however, researchers at the Department of Energy’s Oak Ridge National Laboratory, working as part of a consortium with Ford, General Motors and DaimlerChrysler, must figure out how to lower the cost of carbon fiber composites. If they are successful in developing high-volume renewable sources of carbon fiber feedstocks, ORNL’s Bob Norris believes they will be on the road to success.

"Whereas today the cost to purchase commercial-grade carbon fiber is between $8 and $10 per pound, the goal is to reduce that figure to between $3 and $5 per pound," said Norris, leader of ORNL’s Polymer Matrix Composites Group. At that price, it would become feasible for automakers to use more than a million tons of composites - approximately 300 pounds of composites per vehicle - annually in the manufacturing of cars.

The big advantage of carbon fiber is that it is one-fifth the weight of steel yet just as strong and stiff, which makes it ideal for structural or semi-structural components in automobiles. Replacing half the ferrous metals in current automobiles could reduce a vehicle’s weight by 60 percent and fuel consumption by 30 percent, according to some studies. The resulting gains in fuel efficiency, made in part because smaller engines could be used with lighter vehicles, would also reduce greenhouse gas and other emissions by 10 percent to 20 percent.

All of this would come with no sacrifice in safety, as preliminary results of computer crash simulations show that cars made from carbon fiber would be just as safe - perhaps even safer - than today’s automobiles. Today’s Formula 1 racers are required by mandate to be made from carbon fiber to meet safety requirements.

Progress in developing affordable carbon fiber composites has been steady as ORNL researchers with the support of the University of Tennessee work to optimize raw materials and spinning processes for alternative forms of carbon fiber precursors from renewable sources.

Another focus is on developing an efficient carbon fiber oxidation process, which would significantly increase production and lower cost of this raw material. One promising possibility is plasma processing technology to rapidly oxidize precursor fibers. In this area, ORNL is working with Atmospheric Glow Technologies, a high-tech company spun off from UT that has expertise in atmospheric pressure plasma processing. This is a technique to generate and use plasmas in a non-traditional way - in the open atmosphere instead of in a carefully controlled environment such as in inert gases and at very low pressures.

ORNL is also establishing a modular carbon fiber research pilot line to evaluate these revolutionary new processes on a comparable basis against conventional industrial processes.

"The goal is to demonstrate and transfer the technology to producers of carbon fiber, which could be existing carbon fiber producers or perhaps companies in the forest product industries," Norris said.

Researchers also are working to develop techniques to allow high-volume cost-effective processing of carbon fiber, hybrid glass-carbon fiber and reinforced thermoplastic material forms. In addition, ORNL recently installed an advanced preforming machine that features a robotically actuated arm that chops and sprays fiber and a binder in powder form to create fiber preforms. After being set at elevated temperature, the preforms are injected with resin in a mold and consolidated under pressure to create the final part.

"The preforming process is the first step in creating polymer composite structural and semi-structural auto parts that are lightweight and cost-competitive with metal parts they would replace," Norris said.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. This research is funded by DOE’s Office of Energy Efficiency and Renewable Energy.

Ron Walli | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>