Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Purdue method shows promise for improving auto suspensions


Mechanical engineers at Purdue University have demonstrated a new method for analyzing the components of automotive suspension systems in work aimed at improving the performance, reducing the weight and increasing the durability of suspensions.

The researchers have demonstrated that their method can be used to show precisely how a part’s performance is changed by damage and also how its changing performance affects other parts in the suspension.

Findings are detailed in a paper being presented Wednesday (Nov. 9) during the International Mechanical Engineering Congress and Exposition in Orlando, Fla. The conference is sponsored by the American Society of Mechanical Engineers.

The approach represents a potential change in how automotive suspension systems will be designed in the future, said Douglas E. Adams, an associate professor of mechanical engineering who is leading the research.

"The way it’s done now is that each of the parts making up the suspension are manufactured to be as rugged as possible," Adams said. "Usually, different suppliers provide the different components, and what they do as good suppliers is optimize the strength and durability of their component.

"The problem with this approach is that some of the parts are over-engineered and heavier than they need to be because they are designed to withstand greater forces than they will encounter once they are integrated into the system. This results in a heavy suspension system that doesn’t handle very well, and higher fuel and steel consumption than you would like.

"A better, more integrated approach that automakers are now pursuing is to test the entire suspension by analyzing parts, not as isolated units but as interconnected components. That way, we will learn more precisely how individual parts interact with each other, and we will be able to design parts that are just as light and rugged as they need to be but not too heavy or rugged."

The integrated approach is particularly important for the design of suspension systems because one damaged part can cause heavier strain on surrounding parts. If engineers know which parts are most prone to damage, those parts can be built heavier and other parts can be made lighter, reducing the overall weight and improving the performance of the suspension.

A suspension system consists of parts such as bolts, rubber bushings, coil springs, steering mechanisms and tie rods. The method developed at Purdue senses naturally occurring vibration patterns to detect damage to components. Sensors called "tri-axial accelerometers" are attached to suspension components and are used to collect data as vibration passes through the components. The data are fed to a computer, where complex software programs interpret the information to analyze each part’s performance.

Such "fault-identification" methods may not only provide information for designing better suspensions but also might be used for future "structural health monitoring" systems in cars that automatically detect damaged parts and estimate how long they will last.

When perfected, such a "systems approach" could provide a competitive edge to companies that make suspension parts. The work is funded by ArvinMeritor Inc., which makes suspension components at its plant in Columbus, Ind. The research also is supported by the Center for Advanced Manufacturing, located in Purdue’s Discovery Park, the university’s hub for interdisciplinary research.

"We want to develop instrumentation, sensing methods and technologies and also ways to process data that industry can use to conduct durability tests on so-called integrated suspensions," Adams said. "The company that designs an integrated suspension system that is lighter and lasts longer than the component-wise suspension will have a competitive advantage over other companies."

The research paper being presented this week, written by mechanical engineering doctoral student Muhammad Haroon and Adams, focuses on bolts connecting the various components in the suspension system of a luxury sedan. In research conducted at the university’s Ray W. Herrick Laboratories, the engineers showed that their system was able to detect damaged bolts, precisely determine how a bolt’s performance was affected by the damage and how its changing performance affected other parts in the suspension system.

"What we’ve shown in this particular paper is that we can detect very small changes in a part’s performance when it is damaged, and we’ve also been able to quantify the changes, which is really significant," Adams said. "We quantify the changes by turning data into information using a software algorithm that utilizes an embedded sensitivity model, which we developed.

"The reason it’s important to quantify the change is that, if we know one part is experiencing a failure mechanism of a certain type and another component is experiencing increasing strain as a result of the damaged part, we can figure out which parts need to be heaviest and which can be lighter."

The researchers hope to complete work to develop the method in less than two years, at which time it could be ready for commercial use.

Writer: Emil Venere, (765) 494-4709,

Source: Douglas Adams, (765) 496-6033,

Purdue News Service: (765) 494-2096;

Emil Venere | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>