Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airbags Will Become Even More Secure

08.02.2005


Russian researchers, specialists of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, suggest the way to make motor-car airbags even more secure. Their theoretical and practical investigations allowed to determine which the compounds should be included in the powder that burns at the moment of blow during the accident so that the airbags were instantly filled up with gases not dangerous to human beings and environment. The researchers’ effort was supported by the International Science and Technology Center.



"Despite the fact that motorcars of established companies have long ago been equipped with airbags, gas generating compositions in them are still far from perfect", says David Lempert, Ph.D. (Chemistry), one of the development authors. The problem is that the requirements to these compositions are rather firm, multiple and sometimes difficult to combine.

Evidently, the airbag powder should burn down instantly, i.e. within 50-60 milliseconds. Along with that, sufficient volume of gases should be formed to fill in the airbag and to protect a person from a blow. At the point of accident, the powder should instantly ignite and burn down at the predetermined combustion rate, i.e. this should be absolutely safe for the car and the passengers, and during all the rest of the time it should preserve exceptional stability – during the 10 to 15-year shelf life, in rainy, frosty and hot weather at the temperature of up to + 110 degrees C it should remain invariably ready, but be insensitive to shaking, friction and blows. Besides, it is necessary that the compositions burned down producing no smoke and detrimental products, such as nitric oxide and carbon monoxide, and making minimal amount of steam.


Multiple requirements did not discourage the researchers. It is no wonder, as the specialists of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, possess unique experience in creating common powders and solid propellants. It is clear that the powder for motorcars should be based on atoms of only four elements - carbon, hydrogen, nitrogen and oxygen. The software developed by the authors for mathematical modelling of the powder composition provided several potentially suitable structures. Some of them have already been synthesized and approbated, the synthesis and testing of others is still forthcoming.

It has turned out that there is no better foundation than ammonium nitrate (sold in any fertilizer shop) for such powder yet. This is unsurpassed oxidant for self-burning smokeless compositions, although it has some drawbacks. However, the difficulty is that this compound absords moisture during its shelf life, so it may cake or petrify. The problem has been a concern of all ammonium nitrate storehouses for a long time. This is in general the trouble with ammonium nitrate – i.e. it can exist in various phase states, characteristics of which, and most importantly density, vary significantly.

“We tried to overcome such instability by creating the so-called cocrystallizer of ammonium nitrate with its other compound - ammonium formate, explained David Lempert. In essence, this is a new substance, its characteristics being different from those of base salts. Detailed investigations showed that it performs oxidant functions no worse than the base ammonium nitrate does, but it does not cause the “phase state” difficulties. Crystals of the new compound have no phase transformations in the range of -50 through +80 degrees C, and it makes ammonium formate a very good candidate for gas generating composition, its storage temperature condition being up to 80 degrees C.”

However, the researchers did not limit their effort to the development of chemical composition of smokeless and nontoxic powder for motorcar airbags. They also invented the way to form the charge so that that it could burn down in fractions of a second. Nevertheless, the fuel charge structure suggested by the authors is a secret they do not disclose. The conducted experiments prove – they have managed to increase combustion rate by several times. So the “inflatable defence” developed in a new way by Russian researchers will work quicker and more reliably than the traditional one. Although in case of an accident the passenger or the driver will have to spend a short period of time inside the car, there will be neither smoke nor toxic gases from the airbag, so they would not do any harm.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>