Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airbags Will Become Even More Secure

08.02.2005


Russian researchers, specialists of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, suggest the way to make motor-car airbags even more secure. Their theoretical and practical investigations allowed to determine which the compounds should be included in the powder that burns at the moment of blow during the accident so that the airbags were instantly filled up with gases not dangerous to human beings and environment. The researchers’ effort was supported by the International Science and Technology Center.



"Despite the fact that motorcars of established companies have long ago been equipped with airbags, gas generating compositions in them are still far from perfect", says David Lempert, Ph.D. (Chemistry), one of the development authors. The problem is that the requirements to these compositions are rather firm, multiple and sometimes difficult to combine.

Evidently, the airbag powder should burn down instantly, i.e. within 50-60 milliseconds. Along with that, sufficient volume of gases should be formed to fill in the airbag and to protect a person from a blow. At the point of accident, the powder should instantly ignite and burn down at the predetermined combustion rate, i.e. this should be absolutely safe for the car and the passengers, and during all the rest of the time it should preserve exceptional stability – during the 10 to 15-year shelf life, in rainy, frosty and hot weather at the temperature of up to + 110 degrees C it should remain invariably ready, but be insensitive to shaking, friction and blows. Besides, it is necessary that the compositions burned down producing no smoke and detrimental products, such as nitric oxide and carbon monoxide, and making minimal amount of steam.


Multiple requirements did not discourage the researchers. It is no wonder, as the specialists of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, possess unique experience in creating common powders and solid propellants. It is clear that the powder for motorcars should be based on atoms of only four elements - carbon, hydrogen, nitrogen and oxygen. The software developed by the authors for mathematical modelling of the powder composition provided several potentially suitable structures. Some of them have already been synthesized and approbated, the synthesis and testing of others is still forthcoming.

It has turned out that there is no better foundation than ammonium nitrate (sold in any fertilizer shop) for such powder yet. This is unsurpassed oxidant for self-burning smokeless compositions, although it has some drawbacks. However, the difficulty is that this compound absords moisture during its shelf life, so it may cake or petrify. The problem has been a concern of all ammonium nitrate storehouses for a long time. This is in general the trouble with ammonium nitrate – i.e. it can exist in various phase states, characteristics of which, and most importantly density, vary significantly.

“We tried to overcome such instability by creating the so-called cocrystallizer of ammonium nitrate with its other compound - ammonium formate, explained David Lempert. In essence, this is a new substance, its characteristics being different from those of base salts. Detailed investigations showed that it performs oxidant functions no worse than the base ammonium nitrate does, but it does not cause the “phase state” difficulties. Crystals of the new compound have no phase transformations in the range of -50 through +80 degrees C, and it makes ammonium formate a very good candidate for gas generating composition, its storage temperature condition being up to 80 degrees C.”

However, the researchers did not limit their effort to the development of chemical composition of smokeless and nontoxic powder for motorcar airbags. They also invented the way to form the charge so that that it could burn down in fractions of a second. Nevertheless, the fuel charge structure suggested by the authors is a secret they do not disclose. The conducted experiments prove – they have managed to increase combustion rate by several times. So the “inflatable defence” developed in a new way by Russian researchers will work quicker and more reliably than the traditional one. Although in case of an accident the passenger or the driver will have to spend a short period of time inside the car, there will be neither smoke nor toxic gases from the airbag, so they would not do any harm.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>