Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nocturnal vision of insects inspires automakers to develop improved night cameras

08.01.2010
The ability of animals to see in the dark has led biology professor Eric Warrant at Lund University in Sweden to an exciting collaboration with the automaker Toyota.

The collaborative project aims to develop a new type of colour camera that in the future will help people drive cars more safely when it's dark outside. The mathematics researcher Henrik Malm from Lund University has directed the mathematical work.

A few years ago, when the automaker Toyota wanted to find new ways to develop certain safety features in their car models, they started to investigate the field of bio-mimetics, or bio-inspiration, as it is also called. Bio-inspiration is about constructing technological solutions using Nature as a model, that is, imitating solutions that Nature has itself invented with the help of the laws of evolution. This is how Toyota came into contact with Professor Eric Warrant's research on nocturnally active insects.

"For instance, there's a lot to be learned from nocturnally active dung beetles that live in cow dung," says Eric Warrant.

Eric Warrant and his colleagues at the Department of Biology, Lund University, are pursuing world-leading vision research. For some 25 years, Eric Warrant has been interested in the function of eyes in various animal species, especially in terms of seeing in the dark. Among other species, he has studied nocturnally active beetles, bees, and moths.

Beetles, bees, and moths have compound eyes with multiple lenses that work together to create a single image in the animal's eye. The light-sensitive cells in the retinas of these eyes have a capacity to exploit light even in situations where the light is weak. When night falls, the light-sensitive cells start to cooperate in a way that renders the function of the retina flexible. For example, at any given moment a certain part of the retina may register the details of a flower while other parts of the same retina may simultaneously monitor the terrain for any movements in the darkness.

Together with mathematicians Henrik Malm and Magnus Oskarsson from Lund University and engineers from Toyota, Eric Warrant has now converted the remarkable night vision of insects into mathematical algorithms that serve as a basis for digital image creation in an entirely new type of night camera.

"The algorithms we devised imitate the eye's method for enhancing visual perception in dim light," says Henrik Malm, who directed the mathematical work.

The night colour camera is now being tested at Toyota's developmental facility in Brussels. The Lund researchers' projects and their collaboration with Toyota is featured in the next issue of the international journal New Scientist.

For more information, please contact:
Eric Warrant, professor at the Department of Biology, Lund University
Eric.Warrant@cob.lu.se, tel +61 (0)429 470693 (can be reached 08.00-12.00 noon Central European Time)
Henrik Malm, mathematics researcher, Lund University
Henrik.Malm@cob.lu.se, tel +46 (0)46-2229340, cell +46 (0)70-4567673
Magnus Oskarsson, senior lecturer in mathematics, Lund University
Magnus.Oskarsson@math.lth.se, tel +46 (0)46-2228538
Information officer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;
+46 46 222 71 86

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>