Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nocturnal vision of insects inspires automakers to develop improved night cameras

08.01.2010
The ability of animals to see in the dark has led biology professor Eric Warrant at Lund University in Sweden to an exciting collaboration with the automaker Toyota.

The collaborative project aims to develop a new type of colour camera that in the future will help people drive cars more safely when it's dark outside. The mathematics researcher Henrik Malm from Lund University has directed the mathematical work.

A few years ago, when the automaker Toyota wanted to find new ways to develop certain safety features in their car models, they started to investigate the field of bio-mimetics, or bio-inspiration, as it is also called. Bio-inspiration is about constructing technological solutions using Nature as a model, that is, imitating solutions that Nature has itself invented with the help of the laws of evolution. This is how Toyota came into contact with Professor Eric Warrant's research on nocturnally active insects.

"For instance, there's a lot to be learned from nocturnally active dung beetles that live in cow dung," says Eric Warrant.

Eric Warrant and his colleagues at the Department of Biology, Lund University, are pursuing world-leading vision research. For some 25 years, Eric Warrant has been interested in the function of eyes in various animal species, especially in terms of seeing in the dark. Among other species, he has studied nocturnally active beetles, bees, and moths.

Beetles, bees, and moths have compound eyes with multiple lenses that work together to create a single image in the animal's eye. The light-sensitive cells in the retinas of these eyes have a capacity to exploit light even in situations where the light is weak. When night falls, the light-sensitive cells start to cooperate in a way that renders the function of the retina flexible. For example, at any given moment a certain part of the retina may register the details of a flower while other parts of the same retina may simultaneously monitor the terrain for any movements in the darkness.

Together with mathematicians Henrik Malm and Magnus Oskarsson from Lund University and engineers from Toyota, Eric Warrant has now converted the remarkable night vision of insects into mathematical algorithms that serve as a basis for digital image creation in an entirely new type of night camera.

"The algorithms we devised imitate the eye's method for enhancing visual perception in dim light," says Henrik Malm, who directed the mathematical work.

The night colour camera is now being tested at Toyota's developmental facility in Brussels. The Lund researchers' projects and their collaboration with Toyota is featured in the next issue of the international journal New Scientist.

For more information, please contact:
Eric Warrant, professor at the Department of Biology, Lund University
Eric.Warrant@cob.lu.se, tel +61 (0)429 470693 (can be reached 08.00-12.00 noon Central European Time)
Henrik Malm, mathematics researcher, Lund University
Henrik.Malm@cob.lu.se, tel +46 (0)46-2229340, cell +46 (0)70-4567673
Magnus Oskarsson, senior lecturer in mathematics, Lund University
Magnus.Oskarsson@math.lth.se, tel +46 (0)46-2228538
Information officer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;
+46 46 222 71 86

Lena Björk Blixt | idw
Further information:
http://www.vr.se

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>