Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye Movements and Sight Distance Reveal How Drivers Negotiate Winding Roads: New Study May Lead to In-Car Warning System

08.07.2010
It is well-documented that when negotiating winding roads, drivers tend to look at a specific, well-defined point on the lane marking — referred to as the tangent point. New research finds that the further drivers can look ahead, generally in left-hand curves, wide curves and when leaving a curve, the less they have to look at the tangent point.

Alternatively, when drivers enter or maneuver through a right-bound curve, where they see less roadway ahead, they will spend more time looking at the tangent point. These findings are reported in a recently published article, “Car drivers attend to different gaze targets when negotiating closed vs. open bends,” in the Journal of Vision.

“The ultimate goal of the project is to build a device into cars that warns the driver if he is in danger of unintentionally departing from the lane,” says author Farid I. Kandil of the Department of Psychology, University of Münster, Germany.

In the study, six drivers test-drove a car repeatedly through a series of 12 right- and left-hand bends, or curves, on real roads while their eye movements were recorded. The results confirmed that when moving into a curve, drivers rely heavily on using the tangent point before turning the steering wheel. The findings further revealed that a driver will look at the tangent point 80 percent of the time when there is a shorter sight distance, such as with sharp, right-hand curves. In open bends such as left-hand curves, and when leaving curves, drivers spent a third of their time looking at the end of the curve and the straight road that comes after.

The experiments were conducted in right-hand traffic as in continental Europe and the United States. According to the researchers, there are many hints suggesting that the results can also be used to predict how drivers negotiate curves in left-hand traffic.

“The system we envision will look out for upcoming curves and retrieve information about the eye movements the driver normally performs,” explains Kandil. “If the driver does not show his typical pattern of eye movements upon approaching a bend, then the system will assume that he has not seen it and will warn him in time.”

The research team plans to conduct additional experiments, using a prototype to determine whether the warning system provides enough time for the driver to react properly.

The Association for Research in Vision and Ophthalmology (ARVO) is the largest eye and vision research organization in the world. Members include some 12,500 eye and vision researchers from over 80 countries. The Association encourages and assists research, training, publication and dissemination of knowledge in vision and ophthalmology. For more information, visit www.arvo.org.

ARVO’s Journal of Vision (www.journalofvision.org) is an online-only, peer-reviewed, open-access publication devoted to visual function in humans and animals. It explores topics such as spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics. JOV is known for hands-on datasets and models that users can manipulate online.

Katrina Norfleet | Newswise Science News
Further information:
http://www.arvo.org

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>