Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye Movements and Sight Distance Reveal How Drivers Negotiate Winding Roads: New Study May Lead to In-Car Warning System

08.07.2010
It is well-documented that when negotiating winding roads, drivers tend to look at a specific, well-defined point on the lane marking — referred to as the tangent point. New research finds that the further drivers can look ahead, generally in left-hand curves, wide curves and when leaving a curve, the less they have to look at the tangent point.

Alternatively, when drivers enter or maneuver through a right-bound curve, where they see less roadway ahead, they will spend more time looking at the tangent point. These findings are reported in a recently published article, “Car drivers attend to different gaze targets when negotiating closed vs. open bends,” in the Journal of Vision.

“The ultimate goal of the project is to build a device into cars that warns the driver if he is in danger of unintentionally departing from the lane,” says author Farid I. Kandil of the Department of Psychology, University of Münster, Germany.

In the study, six drivers test-drove a car repeatedly through a series of 12 right- and left-hand bends, or curves, on real roads while their eye movements were recorded. The results confirmed that when moving into a curve, drivers rely heavily on using the tangent point before turning the steering wheel. The findings further revealed that a driver will look at the tangent point 80 percent of the time when there is a shorter sight distance, such as with sharp, right-hand curves. In open bends such as left-hand curves, and when leaving curves, drivers spent a third of their time looking at the end of the curve and the straight road that comes after.

The experiments were conducted in right-hand traffic as in continental Europe and the United States. According to the researchers, there are many hints suggesting that the results can also be used to predict how drivers negotiate curves in left-hand traffic.

“The system we envision will look out for upcoming curves and retrieve information about the eye movements the driver normally performs,” explains Kandil. “If the driver does not show his typical pattern of eye movements upon approaching a bend, then the system will assume that he has not seen it and will warn him in time.”

The research team plans to conduct additional experiments, using a prototype to determine whether the warning system provides enough time for the driver to react properly.

The Association for Research in Vision and Ophthalmology (ARVO) is the largest eye and vision research organization in the world. Members include some 12,500 eye and vision researchers from over 80 countries. The Association encourages and assists research, training, publication and dissemination of knowledge in vision and ophthalmology. For more information, visit www.arvo.org.

ARVO’s Journal of Vision (www.journalofvision.org) is an online-only, peer-reviewed, open-access publication devoted to visual function in humans and animals. It explores topics such as spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics. JOV is known for hands-on datasets and models that users can manipulate online.

Katrina Norfleet | Newswise Science News
Further information:
http://www.arvo.org

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>