Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An Artificial Eye on Your Driving

TAU develops new safety technology for automotive industry

With just a half second's notice, a driver can swerve to avoid a fatal accident or slam on the brakes to miss hitting a child running after a ball. But first, the driver must perceive the danger.

Research shows that a rapid alert system can help mitigate the risks, fatalities and severe injuries from road accidents, says Prof. Shai Avidan of Tel Aviv University's Faculty of Engineering. He is currently collaborating with researchers from General Motors Research Israel to keep cars on the road and people out of hospitals.

An expert in image processing, Prof. Avidan and his team are working to develop advanced algorithms that will help cameras mounted on GM cars detect threats, alerting drivers to make split-second decisions. His research has been published in leading journals, including the IEEE Transaction on Pattern Analysis and Machine Intelligence and featured at conferences in the field.

The challenge, says Prof. Avidan, is to develop a system that can recognize people, distinguishing them from other moving objects — and to create a model that can react almost instantaneously. Ultimately, he is hoping computer vision research will make cars smarter, and roads a lot safer.

An upgrade you can't live without

Cars are not much different from one another. They all have engines, seats, and steering wheels. But new products are adding another dimension by making cars more intelligent. One such product is the smart camera system by MobilEye, an Israeli startup company. Prof. Avidan was part of the MobilEye technical team that developed a system to detect vehicles and track them in real-time.

He is now extending that research to develop the next generation of smart cameras — cameras that are aware of their surroundings. His goal is a camera capable of distinguishing pedestrians from other moving objects that can then warn the driver of an impending accident.

The challenge is in the development of a method that can detect and categorize moving objects reliably and quickly. Prof. Avidan hopes to realize such a method by combining powerful algorithms to recognize and track objects. Such a tool could double check for vehicles in your blind spot, help you swerve when a child runs into the street, or automatically block your door from opening if a cyclist is racing toward you, he says.

Eventually, he hopes cameras will be able to recognize just about anything moving through the physical world, offering a tantalizing vision of applications such as autonomous vehicles. The underlying technology could also be used in computer gaming to track a player's movements, or for surveillance to detect a potential intruder.

An automatic auto response

Previously, detection systems used radar, which is expensive and not particularly sensitive to human beings. A smart camera fuelled by a powerful chip, on the other hand, could detect the activities of people and animals, and prompt the car to react accordingly, braking more or locking the doors, for example.

To date, Prof. Avidan has demonstrated that his technology works on infrared, greyscale, and color cameras. "Cameras are quite dumb machines unless you know how to extract information from them," he says. "Now, as the price of cameras drop and computer power grows, we'll see more exciting applications that will keep us safe and make our lives more comfortable."

Keep up with the latest AFTAU news on Twitter:

George Hunka | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>