Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An Artificial Eye on Your Driving

TAU develops new safety technology for automotive industry

With just a half second's notice, a driver can swerve to avoid a fatal accident or slam on the brakes to miss hitting a child running after a ball. But first, the driver must perceive the danger.

Research shows that a rapid alert system can help mitigate the risks, fatalities and severe injuries from road accidents, says Prof. Shai Avidan of Tel Aviv University's Faculty of Engineering. He is currently collaborating with researchers from General Motors Research Israel to keep cars on the road and people out of hospitals.

An expert in image processing, Prof. Avidan and his team are working to develop advanced algorithms that will help cameras mounted on GM cars detect threats, alerting drivers to make split-second decisions. His research has been published in leading journals, including the IEEE Transaction on Pattern Analysis and Machine Intelligence and featured at conferences in the field.

The challenge, says Prof. Avidan, is to develop a system that can recognize people, distinguishing them from other moving objects — and to create a model that can react almost instantaneously. Ultimately, he is hoping computer vision research will make cars smarter, and roads a lot safer.

An upgrade you can't live without

Cars are not much different from one another. They all have engines, seats, and steering wheels. But new products are adding another dimension by making cars more intelligent. One such product is the smart camera system by MobilEye, an Israeli startup company. Prof. Avidan was part of the MobilEye technical team that developed a system to detect vehicles and track them in real-time.

He is now extending that research to develop the next generation of smart cameras — cameras that are aware of their surroundings. His goal is a camera capable of distinguishing pedestrians from other moving objects that can then warn the driver of an impending accident.

The challenge is in the development of a method that can detect and categorize moving objects reliably and quickly. Prof. Avidan hopes to realize such a method by combining powerful algorithms to recognize and track objects. Such a tool could double check for vehicles in your blind spot, help you swerve when a child runs into the street, or automatically block your door from opening if a cyclist is racing toward you, he says.

Eventually, he hopes cameras will be able to recognize just about anything moving through the physical world, offering a tantalizing vision of applications such as autonomous vehicles. The underlying technology could also be used in computer gaming to track a player's movements, or for surveillance to detect a potential intruder.

An automatic auto response

Previously, detection systems used radar, which is expensive and not particularly sensitive to human beings. A smart camera fuelled by a powerful chip, on the other hand, could detect the activities of people and animals, and prompt the car to react accordingly, braking more or locking the doors, for example.

To date, Prof. Avidan has demonstrated that his technology works on infrared, greyscale, and color cameras. "Cameras are quite dumb machines unless you know how to extract information from them," he says. "Now, as the price of cameras drop and computer power grows, we'll see more exciting applications that will keep us safe and make our lives more comfortable."

Keep up with the latest AFTAU news on Twitter:

George Hunka | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>