Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small materials poised for big impact in construction

04.11.2010
Bricks, blocks, and steel I-beams — step aside. A new genre of construction materials, made from stuff barely 1/50,000th the width of a human hair, is about to debut in the building of homes, offices, bridges, and other structures. And a new report is highlighting both the potential benefits of these nanomaterials in improving construction materials and the need for guidelines to regulate their use and disposal. The report appears in the monthly journal ACS Nano.

Pedro Alvarez and colleagues note that nanomaterials likely will have a greater impact on the construction industry than any other sector of the economy, except biomedical and electronics applications. Certain nanomaterials can improve the strength of concrete, serve as self-cleaning and self-sanitizing coatings, and provide many other construction benefits. Concerns exist, however, about the potential adverse health and environmental effects of construction nanomaterials.

The scientists analyzed more than 140 studies on the benefits and risks of nanomaterials. They found that the materials can provide a wide variety of benefits for the construction industry, ranging from greater strength and durability to improved energy efficiency. The report also identified potential adverse health and environmental effects, and cites the importance of developing guidelines to regulate the use and disposal of construction nanomaterials.

The authors acknowledged funding from the Center for Biological and Environmental Nanotechnology at Rice University (National Science Foundation Award EEC-0647452).

ARTICLE FOR IMMEDIATE RELEASE "Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations"

DOWNLOAD FULL TEXT ARTICLE http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nn100866w

CONTACT:
Pedro Alvarez, Ph.D.
Department of Civil & Environmental Engineering
Rice University
Houston, Texas 77005
Phone: (713) 348-5903
Fax: (713) 348-5203
Email: alvarez@rice.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>