Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists invent heat-regulating building material

A new material that can retain and release heat according to specific temperature requirements could make a significant difference to the cost of heating and cooling buildings, scientists say.

Researchers based at The University of Nottingham Ningbo China (UNNC) believe their invention — which could be used in existing structures as well as new builds — could offer considerable energy savings.

The novel non-deformed energy storage phase change material (PCM) has the unique advantage of possessing a larger energy storage capacity with faster thermal response than existing materials and could be cheaply manufactured.

Click here for full story If, for example, the required optimum temperature in a room is 22°C, the material can be fixed so that it starts absorbing any excess heat above that temperature.

The heat-regulating material, devised by researchers at the University’s Centre for Sustainable Energy Technologies, could be applied anywhere, from walls and roofs to wallpaper.

The material looks like a circular tablet with the circumference of a large coin in the laboratory. It can be manufactured in a variety of shapes and sizes, including so small that it can be sprayed as an unobtrusive microscopic film to surfaces.

The building material was recently awarded a patent application approval in China and patent applications are in the pipeline in other countries.

The scientists responsible for the breakthrough are project leader Professor Jo Darkwa, who is Director of the Centre for Sustainable Energy Technologies, Research Associate Oliver Su and, PhD student Tony Zhou.

Professor Darkwa said: “The construction industry produces more carbon emissions than any other industry in the world — even more than aviation. In China, the building sector is one of the highest energy consuming sectors, accounting for about 30 per cent of total energy usage and also a significant proportion of pollutant emissions.

“This material, if widely used, could make a major impact in the world’s efforts to reduce carbon emission.”

The basic structure of the material has to be engineered for a specific temperature before it is used. The next developmental steps will include creating material which can be used for both heating and cooling applications.

“The material won’t make air-conditioners obsolete, because you still need an air conditioner to control humidity and air movement. This material purely reduces the amount of excessive heat energy in a room,” said Professor Darkwa.

The University is looking to develop the material further as well as commercialise it and already has a number of sponsors and partners involved in the research, including the Ningbo Science and Technology Bureau — which provided important funding and support for the initial two-year research — and private companies based in China.

The material could potentially save up to 35 per cent of energy in a building and scientists believe it could also be used in solar panels and LED (light-emitting diode) lighting to enhance the efficiency of these alternative energy-generating technologies.

Also on the cards for further research at UNNC are:

• Exploring which types of paints can be used with the unique material
• Studies to determine the long-term environmental impacts of the use of the materials

• Ways to improve the production of the material to enhance cost efficiency and ensure the process is environmentally-friendly

The scientists at the Centre for Sustainable Energy Technologies, meanwhile, are involved in various other projects aimed at finding ways to reduce the global carbon footprint emitted by the world’s buildings.

Professor Darkwa and Dr David Chow, who leads the Architectural Environment Engineering degree programme, have played a major role in work behind new building regulation laws in Ningbo, China. Building developers in the city are compelled to include at least one sustainable energy technology, among other steps, to reduce any environmental harm associated with construction.

China’s national government is on a major drive to improve the country’s environmental track record and the University’s scientists are increasingly involved in making recommendations to policy makers at the highest levels.

In October, UNNC will be the site of China’s second international symposium on low carbon buildings when scientists, researchers, government officials and practitioners will gather to present and discuss recent research outputs and demonstration projects.

Professor Nabil Gindy, Vice-Provost for Research and Dean of the Graduate School at UNNC, said: “The University’s strategic investment in research infrastructure to facilitate the advancement of knowledge in sustainable energy technologies is reaping rewards.

“We are very proud of the research excellence of this particular team of scientists, who have proven to be world-class specialists in the field of sustainable energy technologies. The University of Nottingham has a longstanding commitment to the global environmental agenda,” he said.

The University’s cutting-edge research feeds into all teaching programmes and PhD students, like Mr Zhou, also get the opportunity to make valuable contributions to the advancement of science, he noted.

Professor Gindy said: “Vital for our scientific progress here, too, is the huge support we receive from the Ningbo city authorities, who also recognise the importance of minimising environmental harm and placing sustainability at the forefront of all endeavours.

“We are, of course, also grateful for assistance from our research collaborators at other universities and in the private sector,” he said.

The research project was supported through grants from organisations that including the Ningbo government, KK Chung Educational Group, Hong Kong-based Sustainable Sourcing Ltd and China’s Suntech Ltd.

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

Story credits
More information is available from Professor Jo Darkwa, Director of the Centre for Sustainable Energy Technologies at The University of Nottingham Ningbo China, on +86 (0)574 8818 0255, or Professor Nabil Gindy, Vice-Provost for Research and Dean of the Graduate School at The University of Nottingham Ningbo China, +86 (0)574 8818 0352,

Emma Thorne - Media Relations Manager

Phone: +44 (0)115 951 5793

Location: King's Meadow Campus

Emma Thorne | EurekAlert!
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>