Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists invent heat-regulating building material

03.08.2011
A new material that can retain and release heat according to specific temperature requirements could make a significant difference to the cost of heating and cooling buildings, scientists say.

Researchers based at The University of Nottingham Ningbo China (UNNC) believe their invention — which could be used in existing structures as well as new builds — could offer considerable energy savings.

The novel non-deformed energy storage phase change material (PCM) has the unique advantage of possessing a larger energy storage capacity with faster thermal response than existing materials and could be cheaply manufactured.

Click here for full story If, for example, the required optimum temperature in a room is 22°C, the material can be fixed so that it starts absorbing any excess heat above that temperature.

The heat-regulating material, devised by researchers at the University’s Centre for Sustainable Energy Technologies, could be applied anywhere, from walls and roofs to wallpaper.

The material looks like a circular tablet with the circumference of a large coin in the laboratory. It can be manufactured in a variety of shapes and sizes, including so small that it can be sprayed as an unobtrusive microscopic film to surfaces.

The building material was recently awarded a patent application approval in China and patent applications are in the pipeline in other countries.

The scientists responsible for the breakthrough are project leader Professor Jo Darkwa, who is Director of the Centre for Sustainable Energy Technologies, Research Associate Oliver Su and, PhD student Tony Zhou.

Professor Darkwa said: “The construction industry produces more carbon emissions than any other industry in the world — even more than aviation. In China, the building sector is one of the highest energy consuming sectors, accounting for about 30 per cent of total energy usage and also a significant proportion of pollutant emissions.

“This material, if widely used, could make a major impact in the world’s efforts to reduce carbon emission.”

The basic structure of the material has to be engineered for a specific temperature before it is used. The next developmental steps will include creating material which can be used for both heating and cooling applications.

“The material won’t make air-conditioners obsolete, because you still need an air conditioner to control humidity and air movement. This material purely reduces the amount of excessive heat energy in a room,” said Professor Darkwa.

The University is looking to develop the material further as well as commercialise it and already has a number of sponsors and partners involved in the research, including the Ningbo Science and Technology Bureau — which provided important funding and support for the initial two-year research — and private companies based in China.

The material could potentially save up to 35 per cent of energy in a building and scientists believe it could also be used in solar panels and LED (light-emitting diode) lighting to enhance the efficiency of these alternative energy-generating technologies.

Also on the cards for further research at UNNC are:

• Exploring which types of paints can be used with the unique material
• Studies to determine the long-term environmental impacts of the use of the materials

• Ways to improve the production of the material to enhance cost efficiency and ensure the process is environmentally-friendly

The scientists at the Centre for Sustainable Energy Technologies, meanwhile, are involved in various other projects aimed at finding ways to reduce the global carbon footprint emitted by the world’s buildings.

Professor Darkwa and Dr David Chow, who leads the Architectural Environment Engineering degree programme, have played a major role in work behind new building regulation laws in Ningbo, China. Building developers in the city are compelled to include at least one sustainable energy technology, among other steps, to reduce any environmental harm associated with construction.

China’s national government is on a major drive to improve the country’s environmental track record and the University’s scientists are increasingly involved in making recommendations to policy makers at the highest levels.

In October, UNNC will be the site of China’s second international symposium on low carbon buildings when scientists, researchers, government officials and practitioners will gather to present and discuss recent research outputs and demonstration projects.

Professor Nabil Gindy, Vice-Provost for Research and Dean of the Graduate School at UNNC, said: “The University’s strategic investment in research infrastructure to facilitate the advancement of knowledge in sustainable energy technologies is reaping rewards.

“We are very proud of the research excellence of this particular team of scientists, who have proven to be world-class specialists in the field of sustainable energy technologies. The University of Nottingham has a longstanding commitment to the global environmental agenda,” he said.

The University’s cutting-edge research feeds into all teaching programmes and PhD students, like Mr Zhou, also get the opportunity to make valuable contributions to the advancement of science, he noted.

Professor Gindy said: “Vital for our scientific progress here, too, is the huge support we receive from the Ningbo city authorities, who also recognise the importance of minimising environmental harm and placing sustainability at the forefront of all endeavours.

“We are, of course, also grateful for assistance from our research collaborators at other universities and in the private sector,” he said.

The research project was supported through grants from organisations that including the Ningbo government, KK Chung Educational Group, Hong Kong-based Sustainable Sourcing Ltd and China’s Suntech Ltd.

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘Europe’s greenest university’ in the UI GreenMetric World University Ranking, a league table of the world’s most environmentally-friendly higher education institutions, which ranked Nottingham second in the world overall.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power. The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health.

Story credits
More information is available from Professor Jo Darkwa, Director of the Centre for Sustainable Energy Technologies at The University of Nottingham Ningbo China, on +86 (0)574 8818 0255, jo.darkwa@nottingham.edu.cn or Professor Nabil Gindy, Vice-Provost for Research and Dean of the Graduate School at The University of Nottingham Ningbo China, +86 (0)574 8818 0352, lily.cai@nottingham.edu.cn

Emma Thorne - Media Relations Manager
Email: emma.thorne@nottingham.ac.uk

Phone: +44 (0)115 951 5793

Location: King's Meadow Campus

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>