Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Will Enhance Coal Mine Safety

17.07.2008
New technology invented by researchers at Southern Illinois University Carbondale will make it easier for coal miners to ensure their safety as they brace the roofs of mine shafts.

Working in coal mines can be backbreaking labor, not to mention dangerous. But a new technology invented by researchers at Southern Illinois University Carbondale will make it easier for miners to ensure their safety as they brace the roofs of mine shafts.

The new method involves simple, but specially designed stackable wood braces that are lighter and stronger than conventional wooden blocks used by miners for centuries. Yoginder Paul Chugh, professor of mining and mineral resources engineering in the SIUC College of Engineering, devised the materials, with the help of several others.

The technology, which several area mines are testing, represents a major improvement over bracing and cribbing methods used by miners for more than 200 years, even though it utilizes the same materials and builds on the same concepts involved. If all goes as planned, the new technology will mean more jobs for Southern Illinois, where some lumber yards already are experimenting with manufacturing the devices.

The new braces, called Atlas Cribs, are comprised of a mix of hardwoods and include a main lateral element made from a board with shorter boards nailed on both sides at both ends. The engineered braces hold many advantages over current methods for bracing roofs and seals.

First, Atlas Cribs are much lighter than the traditional 6-inch square blocks of wood miners use now, making it easier for the miners to handle and stack them. Also, the wood grain orientation in the braces make them stronger than the traditional methods. The new brace design also makes it easier to circulate air around the cribs, which could cut down on one of a mine’s biggest operating costs -- circulating fresh air.

“Air has to circulate in a mine to dilute the methane gases and provide fresh air (to breathe),” Chugh explained. “Moving air through a mine is the second largest energy consumer for a mine, next only to the transportation of coal out of the mine. That’s a pretty substantial amount of energy you’re spending on moving air.”

The new cribbing system takes up 41 percent less area than existing ones and may be up to 50 percent more efficient in terms of airflow, Chugh said.

The system’s strength comes from several design factors. First, the contact areas -- the area where the braces touch each other and the load is actually borne -- are equivalent to the traditional systems. This area is about 6 inches square.

Also, the shorter boards that are nailed to both sides of both ends of the lateral board are cut and positioned so that their grain runs vertically between the roof above and the floor of the mine. This axial grain orientation is much stronger than a parallel one.

“When you compress wood in a parallel direction it is very, very soft,” Chugh said. “So our central element has parallel grains, but the grain on the end pieces are axial to the load, and the strength of wood in this direction is about four times larger.”

For example, a traditional crib about 6 feet high will compress 12 to 14 inches under 70 tons of load. The same size crib made of Atlas Cribs will compress just 6 inches under more than twice the load -- 150 tons.

The lighter weight also means lighter work for the miners charged with building the cribs. Several former miners -- Bill Bell, Harrold Gurley and John Pulliam -- worked with Chugh on the design, with that perspective in mind. The new braces weigh 18 pounds, about half what a traditional cribbing timber weighs, meaning they can also work faster.

“Sometimes miners have to carry the timbers a couple of hundred feet before stacking them,” Chugh said. “So this will be easier on their backs.”

The braces are made from readily available hardwoods including oak, sycamore, poplar and hickory. They come in several sizes -- Atlas 100, 200 and 300 -- with various numbers of contact areas that allow for different cribbing configurations depending on the situation. A six-point configuration, for example, will carry 195 tons while a nine-point one would take about 300 tons of load.

Chugh began working on the concept about one year ago, after experimenting with a brace made from manufactured wood products, such as plywood. The economics of that concept did not work out, and driving back from a meeting in Harrisburg, Pa., the idea for an engineered natural hardwood brace took hold.

“I told the team to stop the car, I had an idea here,” Chugh recalled. A year later, several mines are either testing or plan to test the method this summer, he said, using it to brace mine seals, which are critical stability points. At the same time, several local sawmills also are putting in bids to manufacture the braces, which they could then sell under license to mines throughout the Midwest.

The market potential -- and potential to create more local jobs -- is huge, Chugh said.

“One local mining company uses 400,000 of these each year,” Chugh said. “The total demand within Illinois, Indiana and western Kentucky is about 1.5 million a year.”

The initial price the University will provide to the mines is about 3 cents cheaper per brace than the current method.

Tim Crosby | Newswise Science News
Further information:
http://www.siu.edu

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>