Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spanish engineers design a new model of slope marine dock

It prevents docks from breaking in the face of heavy swell

Scientists from the UGR have designed a new “model” of slope marine docks, more resistant and prepared to reduce risks for ports, promenades or beaches, as well as the costs derived from their maintenance and repair. The design minimizes the risk of breaking of slope docks as they are more resistant against swell energy.

Marine docks construction has traditionally encountered problems derived from swell-produced breking, especially in the event of great storms. The economic spending to repair the damage is very high and it affects ports, promenades or beaches. The most recent case in Spain was the storm of March 2008, which caused considerable material damage in the coasts of the Bay of Biscay.

A new design will permit to build slope marine docks with less risk of damage, in order to reduce the costs of construction, maintenance and upkeep of such maritime structures.

“We have designated this new structure ‘S”, says María Clavero Gilabert, a member of the Group of Dynamics of Environmental Flows in the Andalusian Centre for Environmetal Studies (CEAMA-University of Granada, Spain), supervised by Dr. Miguel Losada Rodríguez.

According to the researcher, this study “is focused on the optimization of the typology of slope marine docks in order to lessen their main damage, the extraction of pieces from the external layer (loss of the blocks which Project the dock against swell).

At present, these structures have been designed in such a way that there may be serious damage in case swell grows stronger than that predicted in the design. Thanks to the results of this work, it is possible to design slope docks which remain absolutely steady up to the design swell and, in case of stronger swell, it i sable to adapt and therefore they do not suffer this problem”. It is possible for docks to reduce swell energy without breaking, with the consequent benefit for the areas to be protected.

Swell Canal

The research work to improve maritime structures has been developed from the tests carried out in the Swell Canal of the CEAMA. It was necessary to “construct slope docks to scale with homogeneous pieces of concrete cubes and carry out tests with incident swells and growing waves, so that the dock became distorted until a balance or stable profile for such wave height was reached”, says María Clavero.

The Swell-Current Canal of the CEAMA, which allows to carry out experiments on a large scale, is one of the most important in Spain; it is 23 metres long, cashiers are one meter high and it is 0.65 metres wide. This “laboratory” has been used quite often and allows to carry out the tests of the research groups specialized in Mechanics of Structures and Hydraulic Engineering. Such tests have been applied to research and technological development agreements with the port authorities of Gijón, the Bay of Cadiz, Almería-Motril, the State Coastal Office of the Spanish Ministry of the Environment, companies such as Consultoría Ibérica de Estudios e Ingeniería S.A, Dragados S.A. or EGMASA, etc.

The study by Clavero Gilabert has been funded by the Spanish Ministry of Education and Science and has been carried out in the last five years. Different papers in International conferences have been fruit of this research; one might mention the 29th and 30th International Conference on Coastal Engineering held in Lisbon -2004- and San Diego -2006-, respectively).

Antonio Marín Ruiz | alfa
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>