Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST data: Enabling the technical-basis for evacuation planning of high-rise buildings

16.09.2010
Researchers at the National Institute of Standards and Technology (NIST) are stepping up the pace for designing safer building evacuations by releasing large, numerical data sets that track the movement of people on stairs during high-rise building evacuation drills.

The data sets will ensure that architects, engineers, emergency planners and others involved in building design have a strong technical basis for safer, more cost-effective building evacuations.

"While stairs have been used in buildings for ages, there is little scientific understanding of how people use them," explained NIST researcher Erica Kuligowski. "For example, we know little of how the width of the stair affects the flow rate, whether people grow fatigued as they descend from tall buildings, or how people merge into a crowded stairwell."

Working with the Public Buildings Service at the U.S. General Services Administration (GSA), NIST researchers made video recordings of evacuation drills in stairwells at nine buildings ranging in height from six to 62 stories tall. The first data sets being released (available at www.nist.gov/bfrl/fire_research/building-occupant-evacuation.cfm) come from four of the buildings and include movement information on more than 3,000 people. Other evacuation data will be posted on the NIST Web site as it becomes available.

NIST researchers have already reported analysis of some of the underlying data at human behavior and fire conferences and will report more in the future. These reports, like most egress studies, provide their findings, but without the raw data.

"The raw data NIST is providing will help to ensure that GSA and others have the scientific basis necessary to provide safe and cost-effective building evacuation," said Kuligowski.

GSA provided research funding support for the project. NIST researchers hope that making the data available will help to develop new evacuation models, provide assessment of the accuracy of existing egress models, and ensure that building owners and managers have a sound basis for evacuation planning.

Before each drill, researchers positioned video cameras to record an overhead view of the evacuation that would not interfere with occupants evacuating the building. Images were pixilated to protect the identity of the building occupants. In most experiments, cameras captured a view of that floor's main landing, the door opening into the stairwell and two to three steps on both sides of the main landing.

Using the videos, researchers developed spreadsheets of data on people's movements. For each occupant, researchers noted the time the individual first entered the video and captured data about their movements until they left the building. Additionally, researchers noted other factors that might influence speed, including the number of people in close proximity, whether they were helping another person, and whether they were carrying something. They also noted if the occupant handrail was used and how much space the person occupied in the stairwell.

"These data will allow researchers to calculate movement speeds of people traveling down stairs as a function of stair width, occupant density, total distance traveled, and merging characteristics at stair landings that could influence updating building safety requirements," Kuligowki said.

This knowledge also will assist in building design and perhaps influence standards on how occupants evacuate during emergencies, she added.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>