Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials poised for big impact in construction

29.07.2010
Rice study give pros, cons of nanotech-enhanced building materials

Nanomaterials are poised for widespread use in the construction industry, where they can offer significant advantages for a variety of applications ranging from making more durable concrete to self-cleaning windows. But widespread use in building materials comes with potential environmental and health risks when those materials are thrown away. Those are the conclusions of a new study published by Rice University engineering researchers this month in ACS Nano.

A study co-authored by Pedro Alvarez, left, and Jaesang Lee suggests that nanomaterials are poised for widespread use in the construction industry.

"The advantages of using nanomaterials in construction are enormous," said study co-author Pedro Alvarez, Rice's George R. Brown Professor and chair of the Department of Civil and Environmental Engineering. "When you consider that 41 percent of all energy use in the U.S. is consumed by commercial and residential buildings, the potential benefits of energy-saving materials alone are vast.

"But there are reasonable concerns about unintended consequences as well," Alvarez said. "The time for responsible lifecycle engineering of man-made nanomaterials in the construction industry is now, before they are introduced in environmentally relevant concentrations."

Alvarez and co-authors Jaesang Lee, a postdoctoral researcher at Rice, and Shaily Mahendra, now an assistant professor at the University of California, Los Angeles, note that nanomaterials will likely have a greater impact on the construction industry than any other sector of the economy, after biomedical and electronics applications. They cite dozens of potential applications. For example, nanomaterials can strengthen both steel and concrete, keep dirt from sticking to windows, kill bacteria on hospital walls, make materials fire-resistant, drastically improve the efficiency of solar panels, boost the efficiency of indoor lighting and even allow bridges and buildings to "feel" the cracks, corrosion and stress that will eventually cause structural failures.

In compiling the report, Lee, Mahendra and Alvarez analyzed more than 140 scientific papers on the benefits and risks of nanomaterials. In addition to the myriad benefits for the construction industry, they also identified potential adverse health and environmental effects. In some cases, the very properties that make the nanomaterials useful can cause potential problems if the material is not disposed of properly. For example, titanium dioxide particles exposed to ultraviolet light can generate molecules called "reactive oxygen species" that prevent bacterial films from forming on windows or solar panels. This same property could endanger beneficial bacteria in the environment.

"There are ways to engineer materials in advance to make them environmentally benign," Alvarez said. "There are also methods that allow us to consider the entire lifecycle of a product and to ensure that it can be recycled or reused rather than thrown away. The key is to understand the specific risks and implications of the product before it it is widely used."

The study was funded by the National Science Foundation via Rice's Center for Biological and Environmental Nanotechnology.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>