Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Michigan Tech Researcher Using Nanoclays to Build Better Asphalt

07.05.2012
Long before the age of freeways and parking lots, Babylonians used a naturally occurring asphalt to reinforce their roads. You can still see patches of the old pavement in the ancient city, even though it was installed in about 600 B.C.

Under the onslaught of 21st century traffic, modern asphalt isn’t likely to hold up for anywhere near 2,700 years. But at Michigan Technological University, Zhanping You is paving the way for brand-new asphalt blends to fight off cracks, rutting and potholes.

His work has drawn so much attention that one of his papers made SciVerse ScienceDirect’s Top 25 Hottest Articles of 2011 for the journal Construction and Building Materials.

“Nanoclay-Modified Asphalt Materials: Preparation and Characterization” reviews recent literature on asphalt that has been doctored with nanomaterials. It also presents new discoveries from You’s team suggesting that adding nanoclays to asphalt materials could make for safer, longer-lasting roadways.

“Asphalt is now made from petroleum, so it’s very expensive,” said You, an associate professor of civil and environmental engineering. “As a result, a lot of people are looking at ways to make it more durable.”

Heat, cold and stress in the form of traffic take their toll on asphalt pavement, made from a mix of asphalt and aggregates like gravel. That leads to cracks, potholes and a process called rutting. Ruts are most likely to form on busy roads, sections with slow traffic, and areas with stop signs and stoplights, where the rubber hits the road hard thousands of times a day.

“Rutting can be very dangerous, especially in snow and ice,” You said. “If we could use advanced materials to reduce rutting, that would be very beneficial to the public.”

You’s team tested two types of nanoclays, adding 2–4 percent by weight to the asphalt. That’s a smidgeon--less than half of a percent of the total weight of the asphalt pavement itself. But it made a big difference.

“It improved the viscosity significantly,” You said. “That means it will provide better stiffness, which means that it won’t deform as much in hot weather or under heavy traffic.”

They don’t yet know if nanoclay can help asphalt resist cracking in cold weather or under heavy loads, since their testing isn’t completed. “But it is always our goal to develop new asphalt mixtures with those qualities,” You said.

His lab is also testing how other nanomaterials, including nano-silica and nano-composites, will affect asphalt durability.

In addition to You, coauthors of “Nanoclay-Modified Asphalt Materials: Preparation and Characterization” are Assistant Professor Qingli Dai, PhD students Julian Mills-Beale and Shu Wei Goh and former undergraduate Justin Foley of Michigan Tech’s Department of Civil and Environmental Engineering; Samit Roy of the University of Alabama, Tuscaloosa; and Associate Professor Gregory Odegard of Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Zhanping You | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>