Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Michigan Tech Researcher Using Nanoclays to Build Better Asphalt

07.05.2012
Long before the age of freeways and parking lots, Babylonians used a naturally occurring asphalt to reinforce their roads. You can still see patches of the old pavement in the ancient city, even though it was installed in about 600 B.C.

Under the onslaught of 21st century traffic, modern asphalt isn’t likely to hold up for anywhere near 2,700 years. But at Michigan Technological University, Zhanping You is paving the way for brand-new asphalt blends to fight off cracks, rutting and potholes.

His work has drawn so much attention that one of his papers made SciVerse ScienceDirect’s Top 25 Hottest Articles of 2011 for the journal Construction and Building Materials.

“Nanoclay-Modified Asphalt Materials: Preparation and Characterization” reviews recent literature on asphalt that has been doctored with nanomaterials. It also presents new discoveries from You’s team suggesting that adding nanoclays to asphalt materials could make for safer, longer-lasting roadways.

“Asphalt is now made from petroleum, so it’s very expensive,” said You, an associate professor of civil and environmental engineering. “As a result, a lot of people are looking at ways to make it more durable.”

Heat, cold and stress in the form of traffic take their toll on asphalt pavement, made from a mix of asphalt and aggregates like gravel. That leads to cracks, potholes and a process called rutting. Ruts are most likely to form on busy roads, sections with slow traffic, and areas with stop signs and stoplights, where the rubber hits the road hard thousands of times a day.

“Rutting can be very dangerous, especially in snow and ice,” You said. “If we could use advanced materials to reduce rutting, that would be very beneficial to the public.”

You’s team tested two types of nanoclays, adding 2–4 percent by weight to the asphalt. That’s a smidgeon--less than half of a percent of the total weight of the asphalt pavement itself. But it made a big difference.

“It improved the viscosity significantly,” You said. “That means it will provide better stiffness, which means that it won’t deform as much in hot weather or under heavy traffic.”

They don’t yet know if nanoclay can help asphalt resist cracking in cold weather or under heavy loads, since their testing isn’t completed. “But it is always our goal to develop new asphalt mixtures with those qualities,” You said.

His lab is also testing how other nanomaterials, including nano-silica and nano-composites, will affect asphalt durability.

In addition to You, coauthors of “Nanoclay-Modified Asphalt Materials: Preparation and Characterization” are Assistant Professor Qingli Dai, PhD students Julian Mills-Beale and Shu Wei Goh and former undergraduate Justin Foley of Michigan Tech’s Department of Civil and Environmental Engineering; Samit Roy of the University of Alabama, Tuscaloosa; and Associate Professor Gregory Odegard of Michigan Tech’s Department of Mechanical Engineering-Engineering Mechanics.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Zhanping You | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>