Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-Made Quakes Could Lead to Safer, Sturdier Buildings

02.08.2013
Earthquakes never occur when you need one, so a team led by Johns Hopkins structural engineers is shaking up a building themselves in the name of science and safety.

Using massive moving platforms and an array of sensors and cameras, the researchers are trying to find out how well a two-story building made of cold-formed steel can stand up to a lab-generated Southern California quake.

The testing, taking place this summer in Buffalo, N.Y., marks the culmination of a three-year, $1 million research project involving scientists from six universities and design consultants from the steel industry. The work is taking place in the only facility in the U.S. that is capable of replicating an earthquake in three directions beneath a building measuring 50 feet long, 20 feet wide and 20 feet tall.

The trials will wrap up in mid-August when the researchers will shake the unoccupied structure with forces comparable to those at the epicenter of the catastrophic 1994 Northridge earthquake in Los Angeles, which claimed dozens of lives and caused billions of dollars in damage.

The researchers may sound like a wrecking crew, but their work has important implications for the people who construct, live or work in buildings. The results are expected to lead to improved nationwide building codes that will make future cold-formed steel buildings less expensive to construct than current ones.

Also, the new codes could, in certain cases, make lightweight cold-formed steel buildings less costly to construct than those made of materials such as timber, concrete or hot-rolled steel. In earthquake-prone regions, these code updates should help structural designers and builders reduce the likelihood of a costly and life-threatening building collapse. Finally, the research, funded primarily by the National Science Foundation, with added support from the steel industry, could lead to broader use of building components made of environmentally friendly cold-formed steel, made of 100 percent recycled steel.

Cold-formed steel pieces, commonly used to frame low- and mid-rise buildings, are made by bending sheet metal, roughly one-millimeter-thick, into structural shapes without using heat. Cold-formed steel already has been used in an array of structures such as college dorms, assisted living centers, small hotels, barracks, apartments and office buildings. Although the material is popular, some large knowledge gaps exist regarding how well cold-formed steel structures will stand up to extreme conditions—including earthquakes. This has caused engineers to be very conservative in their design methods. The tests being conducted atop two “shake tables” at the University at Buffalo should help close those information gaps and lead to better constructed buildings, says lead researcher Benjamin Schafer, of the Whiting School of Engineering at Johns Hopkins.

“This is the first time a full building of cold-formed steel framing has ever been tested in this way, so even the small things we’re learning could have a huge impact,” said Schafer, the Swirnow Family Scholar, professor and chair of the Department of Civil Engineering. “We’ll see code changes and building design changes. We think this will ultimately lead to more economic, more efficient and more sustainable buildings.”

In May, Schafer’s team began supervising a construction crew in assembling a first version of the test building. This structure, about the size of a small real estate or medical office building, was mainly composed of the cold-formed steel skeleton and oriented strand board (OSB) sheathing. When those first tests were completed, that structure was torn down and replaced by an identical building that also included non-structural components such as stairs and interior walls. The researchers are trying to determine whether these additions, which do not support the frame of the building, can still help reduce damage during a quake. It is the second version of the test building that in August will face the strongest seismic forces, as recorded during the Northridge earthquake.

At the test site, the construction of the buildings, the shake trials and the collection of data have been overseen by Kara Peterman of Fairfax, Va., a Johns Hopkins civil engineering doctoral student being supervised by Schafer. She has been gathering data from more than 150 sensors and eight video cameras installed in and around the test buildings. During a simulated quake, these instruments are designed to track the three-dimensional movement of the structure and to record any piece in the building that has “failed,” such as beams that have bent or screws that have come loose.

Peterman said tests on the first version of the building yielded surprisingly good results. “It moved a lot less than we were predicting,” she said. “We did find one small portion of the steel that failed, but that was because of a conflict in the design plans, not because of the way it was constructed. And that small failure was purely local—it didn’t affect the structure as a whole.”

She said she is anxious to see how much the addition of interior walls and other non-structural components will add to the building’s stability during the more powerful tests ahead. Peterman predicted that the final high-intensity test is likely to damage the building, but not enough to cause a catastrophic collapse.

When the testing is completed and the results are analyzed, Schafer’s team plans to incorporate the findings into computer models that will be shared freely with engineers who want to see on their desktop how their designs are likely to respond in an earthquake. “The modeling,” Schafer said, “will create cost efficiencies and potentially save lives.”

In addition to the Johns Hopkins participants, academic researchers from the following schools have taken part in the project: Bucknell University, McGill University, University of North Texas and Virginia Tech. Steel industry partners who have provided technical expertise, materials and additional funding include Bentley Systems, Incorporated; ClarkDietrich Building Systems; Devco Engineering, Inc.; DSi Engineering; Mader Construction Company, Inc.; Simpson Strong-Tie Company, Inc.; the Steel Framing Industry Association; the Steel Stud Manufacturers Association; and the American Iron and Steel Institute.

The research has been funded by National Science Foundation grant number 1041578.

Digital photos of Prof. Schafer and Kara Peterman available; contact Phil Sneiderman.

Related Links:
Cold-Formed Steel Earthquake Testing Website: http://www.ce.jhu.edu/cfsnees/
Kara Peterman’s Earthquake Testing Blog: http://cfsnees.blogspot.com/
Benjamin Schafer’s Website: http://www.ce.jhu.edu/bschafer/
Johns Hopkins Department of Civil Engineering: http://www.ce.jhu.edu/
Whiting School of Engineering: http://engineering.jhu.edu/
Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/ Information on automatic E-mail delivery of science and medical news releases is available at the same address.

Phil Sneiderman | Newswise
Further information:
http://www.jhu.edu

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>