Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hub staircase at the V&A museum relies on DuPont™ SentryGlas® for the strength and appearance of its balustrades

12.05.2010
A new staircase with glass balustrades made of toughened glass laminated together using strong and stiff DuPont™ SentryGlas® interlayer is one of the architectural highlights of the new Daylit Gallery at the Victoria & Albert (V&A) museum in central London. The use of SentryGlas® interlayer enabled not only the production of the safe and structurally secure glass panels used to form the balustrade, but also helped enhance the staircase’s overall transparency and minimal visual impact. The so-called Hub Staircase and Daylit Gallery at the V&A were completed in December 2009 and were opened to the public in early 2010.

The new Daylit gallery is a key component of the relocated and refurbished Medieval and Renaissance Galleries at the V&A, a project designed by UK architects MUMA working with restoration specialist Julian Harrap Architects. The new galleries occupy ten rooms in the south-east corner of the V&A, which had previously been isolated from the rest of the building and lacked physical and visual connections to the adjacent galleries. By removing an existing marble staircase, the architects were able to use the space between the old and new galleries to create the new Daylit gallery and, at one end of the space, a new lift and staircase, called The Hub, to connect various levels of the museum.


Photo a: Alan Williams Photography
By combining the very thin landings and slender columns with cantilevered glass balustrades made with SentryGlas® interlayer, the visual impact of The Hub staircase at the Victoria & Albert Museum in London is reduced and its transparency is increased.


Photo b: Alan Williams Photography
Natural light filters through the staircase in the Daylit Gallery at the Victoria & Albert Museum, enhanced by the use of unobtrusive glass panels made with SentryGlas® interlayer which simultaneously ensure the maximum safety of museum visitors thanks to their high stiffness and strength.

Standing clear of existing walls, The Hub staircase was engineered by the London-based office of structural engineers Dewhurst MacFarlane with very thin landings and slender columns, and was cast on site in reinforced concrete. Combined with the cantilevered glass balustrades, with each panel consisting of two 10 mm tempered glass sheets with a 1.52 mm layer of SentryGlas® interlayer, the overall effect is to reduce its visual impact and increase its transparency. The unobtrusive appearance of the glass balustrades was further enhanced by the unique fixing mechanism developed to secure the glass panels to the staircase.

DuPont™ SentryGlas® interlayer was specified by Dewhurst MacFarlane due to its recognized ability to create highly resilient laminates with extremely high post breakage performance. Working with the balustrade subcontractor TP Aspinall & Sons of Heysham (UK), the balustrades were designed and tested according to British Standards BS 6180:1999 for barriers in and about buildings and BS 6399-1:1996 for loading in buildings, amongst others. For example, two alternative designs – one produced using SentryGlas® interlayer, the other using a standard PVB glass foil to laminate the glass – were tested by the Dutch company Octatube International BV to determine their ability to withstand both static and dynamic loads. “The laminated glass panels made with SentryGlas® passed both of the tests, while the PVB alternative had already failed during static loading, making a subsequent dynamic load test superfluous,” recalls Simon Aspinall, director at TP Aspinall & Sons.

During the pendulum test used to determine the impact resistance of the balustrade design under dynamic loads, the inside panel of the laminate made with SentryGlas® was observed to break on initial impact. Yet the outside panel was undamaged and the glass panel itself remained safely in place, even after a second pendulum test, leading to a positive overall result. “Such findings confirm our own experience from various projects over the last 4 to 5 years that SentryGlas® interlayer is much stronger than a conventional PVB interlayer,” confirms Scott Nelson of Dewhurst MacFarlane. “Its big advantage is that, unlike other interlayers, it performs as a tensile membrane, meaning that it is able to retain a load bearing capacity even if one or both of the panels should break.”

SentryGlas® interlayers are 5 times stronger and approximately 100 times stiffer than PVB. As a consequence, there is almost perfect load transmission between the laminated glass sheets, resulting in laminates made with SentryGlas® demonstrating less than half of the deflection rate of comparable PVB laminates when the same load is applied. Moreover, SentryGlas® laminates show excellent post-glass breakage performance due to the strength of of the interlayer. Upon impact, the glass may break, but dangerous fragments will adhere to the SentryGlas® interlayer, reducing the risk of injury to passers-by. Because of the post-glass breakage performance, it provides continuing protection and resistance to entry or fallout and, in the case of a glass balustrade, its role as a barrier is maintained.

DuPont Glass Laminating Solutions provides materials, services and innovations to makers and specifiers of laminated glass. It helps create a better world by improving home protection and automotive safety, and enabling design of stronger, more energy-efficient buildings that let in more natural light.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval, DuPont™ and SentryGlas® are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.

GLS-EU-2010-01

Editorial Contact:
Birgit Radlinger
Tel.: +49 (0) 61 02/18-2638
Fax: +49 (0) 61 02/18-1318
birgit.radlinger@dupont.com

Birgit Radlinger | DuPont
Further information:
http://www.dupont.com

Further reports about: DuPont Gallery Hub Staircase PVB SentryGlas® glass balustrades

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>