Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As earthquakes take their toll, Virginia Tech engineers look at enhancing building designs

04.01.2011
A next generation of design criteria for buildings located in geographic regions where earthquakes are known to occur, either rarely or frequently, is under development at Virginia Tech through a research contract awarded by the National Institute of Standards and Technology (NIST).
Finley Charney
(http://www.cee.vt.edu/index.php do=view&content=0&apps=2&level=
2&id=17&pid=e0577ab728bb4dee2bd802ecb54abd3f), a structural engineering associate professor in the civil and environmental engineering department (http://www.cee.vt.edu/), and Mahendra Singh(http://www.esm.vt.edu/person.php?id=10038), the Preston Wade Professor of Engineering in the engineering science and mechanics department (http://www.esm.vt.edu/), are developing new structural systems that are geared to perform optimally during earthquakes. Singh’s background is also in civil and structural engineering, and one area of his expertise is in earthquake engineering.

It’s no secret that earthquakes come in all sizes with varying degrees of damage depending on the geographic locations where they occur. And even a small one on the Richter scale that strikes in an impoverished nation can be more damaging than a larger one that occurs in a city where all buildings have been designed to a stricter building code.

According to Charney, attaining acceptable structural performance is a problem even when the current building codes are used as intended for the structural design.

“In my opinion, the current building codes are insufficient because buildings designed according to these codes have evolved only to avoid collapse under very large earthquakes. These same buildings, subjected to smaller, more frequent earthquakes, may have excessive damage, as happened during the 1994 Northridge, California earthquake. I tell my students that good performance for these buildings is not in their DNA,” Charney said.

In the future, structural engineers will base their designs on the concepts of Performance Based Earthquake Engineering (PBEE), where the objective is to control damage and provide life-safety for any size of earthquake that might occur. Charney and Singh said they are developing a variety of new structural systems that “will inherently satisfy PBEE standards, yet have negligible damage when subjected to frequent earthquakes, acceptable damage from moderate earthquakes, and a low probability of collapse during the rare, severe earthquake.” To achieve their goal, they are creating four new PBEE compliant systems called hybrid yielding, standard augmented, advanced augmented, and collapse prevention systems.

Charney explained the hybrid yielding system is an improved configuration of an existing system. The key aspect of this enhanced system is that certain components in a structure are designed to yield sooner than what would occur in a traditional system, and other components are designed to yield later. By controlling the sequence of yielding, the dissipation of the seismic energy that comes with the early yielding should allow the structure to meet low-level and mid-level performance requirements, and the residual stiffness provided through delayed yielding will enhance life safety under larger earthquakes.

The standard augmented system will provide an enhanced performance because it utilizes devices called visco-elastic solid or viscous fluid dampers to help control vibrations. “The additional damping provided by these devices is intended to enhance a system’s performance primarily at the mid-level limit states,” Charney said.

The third system, the advanced augmented, uses the damping devices in conjunction with special metallic yielding devices. “Typically the combination of the devices is two-phased, with the yielding component only engaging after a certain deformation occurs in the damping component,” Charney said.

He described the last system, the collapse prevention system, as “being analogous to an air bag in a car”. This system is completely passive until it is needed. It is designed for use in situations where the damage associated with frequent or occasional earthquakes is negligible, but a total structural collapse cannot be tolerated.

The researchers said all four new designs have common features; they improve structural integrity by limiting residual deformations, controlling dynamic stability, and minimizing the uncertainty in predicting response.

To complete all of this work, Charney says he will develop a computer program that will automatically set up and execute all of the structural analysis required for assessing compliance with the next generation of PBEE. Potentially, he will be analyzing hundreds of thousands of mathematical models of buildings, using one of Virginia Tech’s supercomputers. Charney and Singh have three Ph.D. degrees and several master’s students working on these projects. The project team is called VT-ACES, where ACES stands for Advanced Concepts in Earthquake-engineered Systems.

Charney is the author of Seismic Loads, a Guide to the Seismic Load Provisions of ASCE 7 published in 2010 by the American Society of Civil Engineers (ASCE). He is a regular seminar speaker for ASCE on the subject of earthquake engineering. In addition, he has developed two educational earthquake engineering computer programs NONLIN and EQ-Tools. These programs, used worldwide, have been recently updated though a grant received from the Building Seismic Safety Council.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links

* Disaster management: A complex world brings new vulnerabilities(http://www.vtnews.vt.edu/articles/2009/12/2009-943.html)

* Assessing the seismic hazard of the central-Eastern United States (http://www.vtnews.vt.edu/articles/2011/01/010611-engineering-greenearth.html)

This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2011/01/010311-engineering-charneybuildingdesigns.html

Lynn A. Nystrom | VT News
Further information:
http://www.eng.vt.edu/

Further reports about: ASCE Charney PBEE Seismic earthquake engineering structural engineering

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>