Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind Turbines on Farmland May Benefit Crops

17.12.2010
Researchers at the Ames Laboratory and the University of Colorado find that wind turbines help channel beneficial breezes over nearby plants

Wind turbines in Midwestern farm fields may be doing more than churning out electricity. The giant turbine blades that generate renewable energy might also help corn and soybean crops stay cooler and dryer, help them fend off fungal infestations and improve their ability to extract growth-enhancing carbon dioxide [CO2] from the air and soil.

Speaking at the annual meeting of the American Geophysical Union, a scientific society, in San Francisco today, a researcher at the U.S. Department of Energy’s Ames Laboratory and his co-researcher from the University of Colorado announced the preliminary findings of a months-long research program aimed at studying how wind turbines on farmlands interact with surrounding crops.

“We’ve finished the first phase of our research, and we’re confident that wind turbines do produce measureable effects on the microclimate near crops,” said Ames Laboratory associate and agricultural meteorology expert Gene Takle. According to Takle, who is also a professor of agricultural meteorology and director of the Climate Science Program at Iowa State University, the slow-moving turbine blades that have become a familiar sight along Midwestern highways, channel air downwards, in effect bathing the crops below via the increased airflow they create.

Instruments to measure wind speed and turbulence

His colleague in the research is Julie Lundquist, assistant professor, Department of Atmospheric and Oceanic Sciences, at the University of Colorado at Boulder, joint appointee at the U.S. Department of Energy’s National Renewable Energy Laboratory, and Fellow of the Renewable and Sustainable Energy Institute. Lundquist’s team uses a specialized laser known as a lidar to measure winds and turbulence from near the Earth’s surface to well above the top tip of a turbine blade.

“Our laser instrument could detect a beautiful plume of increased turbulence that persisted even a quarter-mile downwind of a turbine,” Lundquist said.

Both Takle and Lundquist stressed that their early findings have yet to definitively establish whether or not wind turbines are in fact beneficial to the health and yield potential of soybeans and corn planted nearby. However, their finding that the turbines increase airflow over surrounding crops, suggests this is a realistic possibility.

“The turbulence resulting from wind turbines may speed up natural exchange processes between crop plants and the lower atmosphere,” Takle said.

Researchers take temperature measurements on corn leaves For instance, crops warm up when the sun shines on them, and some of that heat is given off to the atmosphere. Extra air turbulence likely speeds up this heat exchange, so crops stay slightly cooler during hot days. On cold nights, turbulence stirs the lower atmosphere and keeps nighttime temperatures around the crops warmer.

“In this case, we anticipate turbines’ effects are good in the spring and fall because they would keep the crop a little warmer and help prevent a frost,” said Takle. “Wind turbines could possibly ward off early fall frosts and extend the growing season.”

For instance, crops warm up when the sun shines on them, and some of that heat is given off to the atmosphere. Extra air turbulence likely speeds up this heat exchange, so crops stay slightly cooler during hot days. On cold nights, turbulence stirs the lower atmosphere and keeps nighttime temperatures around the crops warmer.

“In this case, we anticipate turbines’ effects are good in the spring and fall because they would keep the crop a little warmer and help prevent a frost,” said Takle. “Wind turbines could possibly ward off early fall frosts and extend the growing season.”

Other benefits of wind turbines could result from their effects on crop moisture levels. Extra turbulence may help dry the dew that settles on plants beginning in late afternoon, minimizing the amount of time fungi and toxins can grow on plant leaves. Additionally, drier crops at harvest help farmers reduce the cost of artificially drying corn or soybeans.

Another potential benefit to crops is that increased airflows could enable corn and soybean plants to more readily extract atmospheric CO2, a needed “fuel” for crops. The extra turbulence might also pump extra CO2 from the soil. Both results could facilitate the crops ability to perform photosynthesis.

Takle’s wind turbine predictions are based on years of research on so-called agricultural shelter belts, which are the rows of trees in a field, designed to slow high-speed natural winds.

“In a simplistic sense, a wind turbine is nothing more than a tall tree with a well-pruned stem. For a starting point for this research, we adapted a computational fluid model that we use to understand trees,” said Takle. “But we plan to develop a new model specific to wind turbines as we gather more data.”

The team’s initial measurements consisted of visual observations of wind turbulence upwind and downwind of the turbines. The team also used wind-measuring instruments called anemometers to determine the intensity of the turbulence. The bulk of the wind-turbulence measurements and the crop-moisture, temperature and CO2 measurements took place in the spring of 2010.

“We anticipate the impact of wind turbines to be subtle. But in certain years and under certain circumstances the effects could be significant,” said Takle. “When you think about a summer with a string of 105-degree days, extra wind turbulence from wind turbines might be helpful. If turbines can bring the temperature down below 100 degrees that could be a big help for crops.”

The Ames Laboratory’s royalty income seed funding program supported the initial work. Additional funding came from the DOE’s Office of Energy Efficiency and Renewable Energy. The U.S. National Laboratory for Agriculture and the Environment contributed the surface flux instruments used to measure the wind turbines’ effects and the personnel to operate them.

Ames Laboratory is a U.S. Department of Energy Office of Science research facility operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global challenges.

Note to media: Ames Laboratory Public Affairs has a short video of Gene Takle talking about the research (see the link at left above). There is also B-roll available showing the research equipment and researchers in the field taking measurements on the corn crop. To download the B-roll, right-click here, then choose the "save link as..." option and save the file as a Quicktime movie.

Steve Karsjen | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>