Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Watching the wine with new technology

Steeped in tradition, Europe’s vintners have found themselves hard pressed to compete with the modern processes used to produce New World wines. Now European researchers are offering the continent’s winemaking industry the opportunity to improve quality, save water and reduce pesticide use without giving up age-old practices.

An automated wireless precision monitoring system that uses sensors to check soil moisture, air temperature and humidity is being commercialised by Italian company Netsens, set up in 2005 as a spin-off from the EU-funded GoodFood project.

Currently in use in several Italian vineyards, Netsens’ Vine-Sense system allows vintners to accurately time harvesting, fight pathogenic attacks, cut water consumption and lower the cost of chemical treatments without even having to visit the vineyard.

“All the data gathered from the sensors is transmitted wirelessly via an internet gateway and can be accessed by the farmer from anywhere,” explains Gianfranco Manes, the head of the Multidisciplinary Institute for Development, Research and Applications at the University of Florence, Italy, and one of the GoodFood coordinators.

Precision monitoring systems have gradually become more accepted in the wine industry in recent years, but most have relied on planting sensors in the vineyards and then traipsing through the fields to manually check each one.

In contrast, data from the sensors developed by Manes’ team are collected every 15 minutes and automatically analysed to provide winegrowers with detailed information about how well their grapes are growing, how much water they need and what risks are present from fungal infections and pests in light of the air humidity, soil moisture and temperature.

Better for wine lovers, better for the environment

The system addresses three critical issues in particular, says Mane. First, it allows farmers to use water more efficiently – knowing that 80 percent of world water consumption goes on agriculture. Second, winegrowers know when they have to use pesticides, so instead of spraying chemicals on the vineyards every two weeks as is common today, they only do so when there is a risk to the vines. And third, they can monitor how well the grapes are developing in order to determine exactly the right time to harvest the wine.

Those production, cost and environmental benefits are immediate in the first year of the system being installed, but in the mid-term, closer monitoring also offers advantages by letting farmers identify different microclimates on their land. This helps them choose the vines best suited to different growing conditions – a procedure known as ‘microzonation’. The upshot is better wine.

“Winegrowers have told us that they are not interested in increasing the size of the harvest but in producing better wine, which evidently boosts their revenue. Consumers, logically, also appreciate it,” Manes says.

Cost-effective technology

Though Italian and European winemakers have traditionally been reluctant to incorporate new technology into their ancient practices, Manes says there has been considerable interest in the system being marketed by Netsens. One key factor is price.

Deploying the sensor nodes and communications infrastructure costs €500 to €1,000 per hectare, with three or four nodes – at a cost of €280 each – needed to provide accurate and comprehensive data.

That compares to the €400 to €600 per node that it costs to install rival systems currently being marketed by US firms, Manes says. He also notes that the rival systems are not well suited to European agriculture because they require a direct communications link to the farmers’ home.

Farmers in the USA tend to live on or near their farm, whereas in Italy and much of Europe, winegrowers can be far away from their vineyards. According to Manes, this makes the internet an obvious choice for accessing the data.

Even higher quality Chianti?

Vine-Sense is currently in use at the Castello di Ama and Montepaldi vineyards in the Chianti region of Tuscany, Italy. By the end of the year, Manes expects systems to be up and running at between 10 and 15 vineyards across the country. He notes that Netsens has had inquiries from winegrowers as far afield as Egypt and Jordan, where water use is a particularly critical issue.

Versions of the system are evidently not limited to use in the wine industry – though it is a particularly high-value sector – and could be used to monitor other crops. The GoodFood project, which received funding under the European Union’s Sixth Framework Programme for research, also developed a range of other technologies for agricultural and food monitoring.

Among them are a range of portable devices to detect toxins, pathogens and chemicals in food, which allow tests that are currently run in a laboratory to be carried out on the farm or at the processing plant.

While these systems require further research before they will be ready to deploy commercially, Netsens is looking to rapidly expand sales of the Vine-Sense system and is seeking partners in other European countries and around the world to help it achieve that goal.

Christian Nielsen | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>