Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Gene Combinations Control Tropical Maize Response to Day Lengths

15.06.2011
Tropical maize is a valuable genetic resource that can help scientists identify the specific genes controlling daylight response.

Tropical maize proves to be a valuable genetic resource, containing genetics not found in USA Corn Belt maize. Most tropical maize varieties respond to the long summer day lengths that occur in U.S. growing regions by flowering late. This delayed flowering response results in poor yields, effectively trapping the useful genes and hindering their incorporation into maize hybrids adapted to the most productive corn growing regions.

Scientists from the United States Department of Agriculture – Agricultural Research Service and North Carolina State University identified four regions of the maize genome that control much of the photoperiod response in maize. A diverse sample of maize lines bred in Mexico and Thailand were crossed into a standard Corn Belt maize line. Results of this study were reported in the May – June issue of Crop Science, the scientific journal published by the Crop Science Society of America.

For each key day length response region, the researchers compared the effects of moving the genes from a tropical variety into a Corn Belt variety. Even at a single genome region, the effects of tropical genes differed, depending on which tropical variety they were bred from. In the most extreme case, the scientists discovered that genes from tropical varieties did not have uniform effects on delayed flowering at the genome region. One of the tropical varieties carried genes that made plants flower earlier than the standard Corn Belt variety.

James Holland, who conducted the study, stated: “We were pleased to validate the effects of these four day length response gene regions that we had identified in previous independent studies. However, we were surprised to discover that some tropical lines carry early flowering genes at our most important day length genome region. Our results highlight the amazing genetic variation that exists in both tropical and temperate maize.”

This research supports findings of other scientists about the genomic position of key day length response genes and reveals unexpected diversity in their effects on flowering. Ongoing research is focused on identifying the specific genes controlling day length response that exist in these regions.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/articles/51/3/1036

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | EurekAlert!
Further information:
http://www.crops.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>