Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Team Offers New Integrated Building Model to Improve Success of Fish Farming Operations

10.02.2012
Today’s "locavore" movement with its emphasis on eating more locally-produced food is a natural fit for fruits and vegetables in nearly every region, but few entrepreneurs have dared to apply the concept to fish farming.

Those who have ventured to turn a vacant barn or garage into an aquaculture business have too often been defeated by high energy and feed costs, building-related woes and serious environmental problems, says aquaculture researcher Andy Danylchuk at the University of Massachusetts Amherst.

Now he and colleagues are melding building design, fish ecology and aquaculture engineering techniques into a first-of-its-kind "building-integrated aquaculture" (BIAq) model to offer an affordable, more holistic and sustainable approach to indoor fish production located close to markets and able to succeed even in cold climates. Their ideas are outlined in the current issue of ASHRAE Journal, published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

As Danylchuk explains, typically when a small-scale entrepreneur starts up an aquaculture operation, he or she installs tanks and plumbing in an old chicken barn, for example. "But that’s like building a house with no regard for the occupants’ comfort or their utility budget," he says. In fact, studies show over 75 percent of total energy demands in the United States are due to building operations.

"Our team began looking at renewable energy systems to make power more affordable, and how fish farm waste streams can become plant food rather than an environmental headache. If you start by taking the building into consideration, these operations might actually become economically feasible," the fish ecologist adds.

The need for local aquaculture is clear, he and fellow UMass Amherst Building-Integrated Aquaculture Working Group members James Webb and green building expert Simi Hoque point out. Due to declining wild fish stocks and environmental degradation, fish farms now account for nearly 40 percent of the world’s total fisheries production and it’s growing.

Further, "while per capita seafood consumption has already reached record levels in the United States, recent USDA recommendations suggest more than twice this amount for a healthy lifestyle. Achieving this goal represents a significant challenge considering approximately 85 percent of U.S. seafood is imported and nearly half of this comes from overseas aquaculture production." These imports are tainted by food security and quality issues as well as considerable environmental drawbacks and financial costs of global transportation.

The BIAq team therefore set out to design a practical model for small businesses to help them produce good quality, local seafood with a modest investment of cash, low energy use, low greenhouse gas emissions, low waste/environmental damage and at prices consumers can afford. Their model dovetails systems to maximize energy efficiency and aquaculture operations by simultaneously addressing humidity, condensation, airflow, water flow, waste stream recovery, passive and renewable energy and worker health and safety.

For example, the BIAq model calls for recirculating fish tank wastewater through a step-wise filter system to remove waste and food residue and re-use the dissolved carbon, nitrogen and phosphorous nutrients as fertilizer in a hydroponic garden. In this way, wastewater is cleaned and recirculated back to the fish, while supporting a cash-crop such as herbs or garden greens attractive to consumers, and diverting wastewater from the environment.

Using a solar water-heating system can dramatically cut energy costs, as well. Another synergistic benefit can be gained by using heat pumps and exchangers, package refrigeration and condensation units to complement each other in controlling humidity and warming the atmosphere in an operation that is water-vapor intensive. Even small changes such as locating supply air ducts to the ceiling to allow air to move over interior walls helps to prevent moisture accumulation and mitigate high humidity, the authors point out.

"We identify areas where a BIAq approach might increase efficiency and reduce operating costs. Our focus is on processes and design decisions that have the greatest potential for energy conservation in the heavily populated temperate regions of the world." They add, "Climate control is a major challenge for indoor recirculating aquaculture systems, and continuing to ignore the design of the building envelope will result in inefficiencies and higher costs."

The authors hope that framing the development of recirculating aquaponics facilities as a holistic and synergistic systems-based endeavor will enable a robust analysis of the environmental, social and economic benefits that will make fish production more sustainable.

This work was supported by the Allen Family Foundation, the USDA’s National Institute of Food & Agriculture, the Massachusetts Agricultural Experiment Station and Department of Environmental Conservation and the Clarence and Anne Dillon Dunwalke Trust.

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>