Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M scientist contributes to mapping of barley genome

18.10.2012
An international team of researchers, including a University of Minnesota scientist, has developed an integrated physical, genetic and functional sequence assembly of the barley genome, one of the world’s most important and genetically complex cereal crops. Results are published in today’s issue of Nature.

The advance will give researchers the tools to produce higher yields, improve pest and disease resistance, and enhance the nutritional value of barley.

Importantly, it also will “accelerate breeding improvements to help barley adapt to climate change,” says Gary Muehlbauer, head of the Department of Plant Biology, a joint department of the university’s College of Biological Sciences and the College of Food, Agricultural and Natural Resource Sciences. “That means making barley more resistant to drought and able to use water and nitrogen more efficiently.”

Muehlbauer is vice chair of the International Barley Sequencing Consortium (IBSC), which carried out the sequencing. The IBSC (www.barleygenome.org) was founded in 2006 and includes scientists from Germany, Japan, Finland, Australia, the United Kingdom, the United States and China. The USDA’s National Institute of Food and Agriculture and the National Science Foundation provided funding for the US part of the effort.

The Nature publication provides a detailed overview of the functional portions of the barley genome, the order and structure of most of its 32,000 genes, and a detailed analysis of where and when genes are switched on in different tissues and at different stages of development. It also describes the location of dynamic regions of the genome that carry genes conferring resistance to devastating diseases. This will greatly improve the understanding of the crop’s immune system.

In the 1990s, Minnesota had a million acres of barley, but that has dwindled to about 120,000 because an epidemic of Fusarium head blight, which has decimated the crop in this state. Most barley is now grown in North Dakota, Montana and Idaho.

“This resource will help make it possible to breed barley that is resistant to various pathogens, that exhibits improved grain quality, and increased drought tolerance and nitrogen use efficiency,” says Muehlbauer, who holds an endowed chair in molecular genetics applied to crop improvement in the Department of Agronomy and Plant Genetics.

Sequencing of the genome will accelerate research in barley and its close relative wheat. It will also allow breeders and scientists to effectively address the challenge of feeding the world’s growing population as climate change increasingly challenges growers with extreme weather events, according to the USDA.

The Nature paper can be found at z.umn.edu/barley. For more information on the IBSC, please visit: www.barleygenome.org.

Peggy Rinard | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>