Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M scientist contributes to mapping of barley genome

18.10.2012
An international team of researchers, including a University of Minnesota scientist, has developed an integrated physical, genetic and functional sequence assembly of the barley genome, one of the world’s most important and genetically complex cereal crops. Results are published in today’s issue of Nature.

The advance will give researchers the tools to produce higher yields, improve pest and disease resistance, and enhance the nutritional value of barley.

Importantly, it also will “accelerate breeding improvements to help barley adapt to climate change,” says Gary Muehlbauer, head of the Department of Plant Biology, a joint department of the university’s College of Biological Sciences and the College of Food, Agricultural and Natural Resource Sciences. “That means making barley more resistant to drought and able to use water and nitrogen more efficiently.”

Muehlbauer is vice chair of the International Barley Sequencing Consortium (IBSC), which carried out the sequencing. The IBSC (www.barleygenome.org) was founded in 2006 and includes scientists from Germany, Japan, Finland, Australia, the United Kingdom, the United States and China. The USDA’s National Institute of Food and Agriculture and the National Science Foundation provided funding for the US part of the effort.

The Nature publication provides a detailed overview of the functional portions of the barley genome, the order and structure of most of its 32,000 genes, and a detailed analysis of where and when genes are switched on in different tissues and at different stages of development. It also describes the location of dynamic regions of the genome that carry genes conferring resistance to devastating diseases. This will greatly improve the understanding of the crop’s immune system.

In the 1990s, Minnesota had a million acres of barley, but that has dwindled to about 120,000 because an epidemic of Fusarium head blight, which has decimated the crop in this state. Most barley is now grown in North Dakota, Montana and Idaho.

“This resource will help make it possible to breed barley that is resistant to various pathogens, that exhibits improved grain quality, and increased drought tolerance and nitrogen use efficiency,” says Muehlbauer, who holds an endowed chair in molecular genetics applied to crop improvement in the Department of Agronomy and Plant Genetics.

Sequencing of the genome will accelerate research in barley and its close relative wheat. It will also allow breeders and scientists to effectively address the challenge of feeding the world’s growing population as climate change increasingly challenges growers with extreme weather events, according to the USDA.

The Nature paper can be found at z.umn.edu/barley. For more information on the IBSC, please visit: www.barleygenome.org.

Peggy Rinard | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>