Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of I scientists develop tool to trace metabolism of cancer-fighting tomato compounds

30.11.2010
The University of Illinois scientists who linked eating tomatoes with a reduced risk of prostate cancer have developed a tool that will help them trace the metabolism of tomato carotenoids in the human body. And they've secured funding from the National Institutes of Health to do it.

"Scientists believe that carotenoids—the pigments that give the red, yellow, and orange colors to some fruits and vegetables—provide the cancer-preventive benefits in tomatoes, but we don't know exactly how it happens," said John W. Erdman, a U of I professor of human nutrition.

The researchers will use isotopic labeling of three tomato carotenoids with heavier carbon atoms than are commonly seen in nature, which will allow tracking of the tomato components' absorption and metabolism in the body, he said.

"We have two questions we'd like to answer. First, are the carotenoids themselves bioactive, or are their metabolic or oxidative products responsible for their benefits? Second, is lycopene alone responsible for the tomato's benefits, or are other carotenoids also important?" he said.

Previous Erdman animal studies have shown that whole tomato powder, which contains all of the fruit's nutritional components, is more effective against prostate cancer than lycopene alone.

"Lycopene, which gives the fruit its red color, has received a lot of attention—it's even advertised as an ingredient in multivitamin supplements, but two little-known colorless carotenoids, phytoene and phytofluene, probably also have benefits," said Nancy Engelmann, a doctoral student in Erdman's laboratory who helped to develop the new method.

Engelmann learned to optimize the amount of carotenoids in tomato cell cultures by treating already high-achieving tomato varieties with two plant enzyme blockers. The best performers were then chosen for culturing and carbon-13 labeling, she said.

The scientists grew tomato cells with non-radioactive carbon-13 sugars, yielding carbon molecules that are heavier than the 12-carbon molecules that exist elsewhere, Erdman said.

"These heavy carbon molecules are then incorporated into the carotenoids in the tomato cell cultures. The result is that researchers will be able to track the activity of lycopene, phytoene, and phytofluene and their metabolites," he said.

Thanks to NIH funding, U of I researchers and colleagues at The Ohio State University are preparing to use this new tool to study carotenoid metabolism in humans.

"It's exciting that we now have the means to pull off this human study. It's work that should move us forward in the fight against prostate cancer," he said.

The research was published in the September 2010 issue of the Journal of Agricultural and Food Chemistry. Co-authors include the U of I's Engelmann, Randy B. Rogers, S. Indumathie Rupassara, Peter J. Garlick; Mary Ann Lila of the U and I and the North Carolina State Plants for Human Health Institute, and Jessica K. Campbell, now with The Bell Institute of Health and Nutrition at General Mills.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>